2,778 research outputs found

    Dynamic modelling, validation and analysis of coal-fired subcritical power plant

    Get PDF
    Coal-fired power plants are the main source of global electricity. As environmental regulations tighten, there is need to improve the design, operation and control of existing or new built coal-fired power plants. Modelling and simulation is identified as an economic, safe and reliable approach to reach this objective. In this study, a detailed dynamic model of a 500 MWe coal-fired subcritical power plant was developed using gPROMS based on first principles. Model validations were performed against actual plant measurements and the relative error was less than 5%. The model is able to predict plant performance reasonably from 70% load level to full load. Our analysis showed that implementing load changes through ramping introduces less process disturbances than step change. The model can be useful for providing operator training and for process troubleshooting among others

    Distributed model predictive control of steam/water loop in large scale ships

    Get PDF
    In modern steam power plants, the ever-increasing complexity requires great reliability and flexibility of the control system. Hence, in this paper, the feasibility of a distributed model predictive control (DiMPC) strategy with an extended prediction self-adaptive control (EPSAC) framework is studied, in which the multiple controllers allow each sub-loop to have its own requirement flexibility. Meanwhile, the model predictive control can guarantee a good performance for the system with constraints. The performance is compared against a decentralized model predictive control (DeMPC) and a centralized model predictive control (CMPC). In order to improve the computing speed, a multiple objective model predictive control (MOMPC) is proposed. For the stability of the control system, the convergence of the DiMPC is discussed. Simulation tests are performed on the five different sub-loops of steam/water loop. The results indicate that the DiMPC may achieve similar performance as CMPC while outperforming the DeMPC method

    The application of a new PID autotuning method for the steam/water loop in large scale ships

    Get PDF
    In large scale ships, the most used controllers for the steam/water loop are still the proportional-integral-derivative (PID) controllers. However, the tuning rules for the PID parameters are based on empirical knowledge and the performance for the loops is not satisfying. In order to improve the control performance of the steam/water loop, the application of a recently developed PID autotuning method is studied. Firstly, a 'forbidden region' on the Nyquist plane can be obtained based on user-defined performance requirements such as robustness or gain margin and phase margin. Secondly, the dynamic of the system can be obtained with a sine test around the operation point. Finally, the PID controller's parameters can be obtained by locating the frequency response of the controlled system at the edge of the 'forbidden region'. To verify the effectiveness of the new PID autotuning method, comparisons are presented with other PID autotuning methods, as well as the model predictive control. The results show the superiority of the new PID autotuning method

    The potential of fractional order distributed MPC applied to steam/water loop in large scale ships

    Get PDF
    The steam/water loop is a crucial part of a steam power plant. However, satisfying control performance is difficult to obtain due to the frequent disturbance and load fluctuation. A fractional order model predictive control was studied in this paper to improve the control performance of the steam/water loop. Firstly, the dynamic of the steam/water loop was introduced in large-scale ships. Then, the model predictive control with an extended prediction self adaptive controller framework was designed for the steam/water loop with a distributed scheme. Instead of an integer cost function, a fractional order cost function was applied in the model predictive control optimization step. The superiority of the fractional order model predictive control was validated with reference tracking and load fluctuation experiments

    Control of a train of high purity distillation columns for efficient production of 13C isotopes

    Get PDF
    It is well-known that high-purity distillation columns are difficult to control due to their ill-conditioned and strongly nonlinear behaviour. The fact that these processes are operated over a wide range of feed compositions and flow rates makes the control design even more challenging. This paper proposes the most suitable control strategies applicable to a series of cascaded distillation column processes. The conditions for control and input-output relations are discusssed in view of the global control strategy. The increase in complexity with increased number of series cascaded distillation column processes is tackled. Uncertainty in the model parameters is discussed with respect to the dynamics of the global train distillation process. The main outcome of this work is insight into the possible control methodologies for this particular class of distillation processes

    Dynamic conversion of solar generated heat to electricity

    Get PDF
    The effort undertaken during this program led to the selection of the water-superheated steam (850 psig/900 F) crescent central receiver as the preferred concept from among 11 candidate systems across the technological spectrum of the dynamic conversion of solar generated heat to electricity. The solar power plant designs were investigated in the range of plant capacities from 100 to 1000 Mw(e). The investigations considered the impacts of plant size, collector design, feed-water temperature ratio, heat rejection equipment, ground cover, and location on solar power technical and economic feasibility. For the distributed receiver systems, the optimization studies showed that plant capacities less than 100 Mw(e) may be best. Although the size of central receiver concepts was not parametrically investigated, all indications are that the optimal plant capacity for central receiver systems will be in the range from 50 to 200 Mw(e). Solar thermal power plant site selection criteria and methodology were also established and used to evaluate potentially suitable sites. The result of this effort was to identify a site south of Inyokern, California, as typically suitable for a solar thermal power plant. The criteria used in the selection process included insolation and climatological characteristics, topography, and seismic history as well as water availability

    Effect of control horizon in model predictive control for steam/water loop in large-scale ships

    Get PDF
    This paper presents an extensive analysis of the properties of different control horizon sets in an Extended Prediction Self-Adaptive Control (EPSAC) model predictive control framework. Analysis is performed on the linear multivariable model of the steam/water loop in large-scale watercraft/ships. The results indicate that larger control horizon values lead to better loop performance, at the cost of computational complexity. Hence, it is necessary to find a good trade-off between the performance of the system and allocated or available computational complexity. In this original work, this problem is explicitly treated as an optimization task, leading to the optimal control horizon sets for the steam/water loop example. Based on simulation results, it is concluded that specific tuning of control horizons outperforms the case when only a single valued control horizon is used for all the loops

    Robust controller design for multiple boilers and boiler turbine units

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Boilers or boiler turbine units are the main source of energy for almost every industrial installation. In most cases, the fuel cost of a power plant is a key factor in the total budget of any industrial unit. Also the major part of the running expense of any plant consists of the total fuel expense of a power plant. Due to this fact, the control of boilers and boiler turbine units confirm their significance. Improving the performance of a power plant and making it cost-effective becomes extremely important for engineers. Over the last few decades, power plant control has been the focus of attention for academic researchers, scientists and control engineers. Many innovative control techniques have been experimented with on boilers. It is seen that in order to meet the vast utility demand of the plant, more than one boiler or boiler-turbine unit is usually installed ·in a power plant. The control of such a system becomes sensitive due to the mutual dependency and interactions between one unit and another. The research reported in this thesis mostly focuses on implementing control systems with multiple boilers and multiple boiler turbine units. Hoo robust controllers are designed for systems where multiple boilers and boilerturbine units are installed and operate in parallel to each other. These controllers maintain power and steam supply in the presence of sudden changes in process parameters and external disturbances in the power plant. These days due to the vast usage of steam in a production unit, power plants consist of more than one boiler. Furthermore control of this kind of system becomes extremely sensitive when the plant is subjected to frequent variations in operating conditions. A loop shaping technique is used to synthesise robust controllers for the set point tracking, disturbance rejection and robust stability of the system against variations of the operational conditions and nonlinearity of the plant. Designed robust controllers are of high orders and, compared to PID controllers these are still not the industry favourite . That is why, to make the controllers in this study industrial favourable, these higher-order controllers are reduced to approximate the multivariable PID controllers structure. This is done for practical implementation by using eigenvalue decomposition technique. Simulation results show that the resulting PID structure displays a good robust stability and performance in the time domain, achieving steam demand and electricity demand from the boiler header and power grid stations for multiple boilers and multiple boiler-turbine units system

    Flexible operation of supercritical power plant via integration of thermal energy storage

    Get PDF
    © 2018 The Author(s).This chapter presents the recent research on various strategies for power plant flexible operations to meet the requirements of load balance. The aim of this study is to investigate whether it is feasible to integrate the thermal energy storage (TES) with the thermal power plant steam-water cycle. Optional thermal charge and discharge locations in the cycle have been proposed and compared. Dynamic modeling and simulations have been carried out to demonstrate the capability of TES integration in supporting the flexible operation of the power plant. The simulation software named SimuEngine is adopted, and a 600 MW supercritical coal-fired power plant model is implemented onto the software platform. Three TES charging strategies and two TES discharging strategies are proposed and verified via the simulation platform. The simulation results show that it is feasible to extract steam from steam turbines to charge the TES and to discharge the stored thermal energy back to the power generation processes. The improved capability of the plant flexible operation is further studied in supporting the responses to the grid load demand changes. The results demonstrated that the TES integration has led to much faster and more flexible responses to the load demand changes.Peer reviewe
    • …
    corecore