984 research outputs found

    Practical Wireless Network Coding and Decoding Methods for Multiple Unicast Transmissions

    Full text link
    We propose a simple yet effective wireless network coding and decoding technique. It utilizes spatial diversity through cooperation between nodes which carry out distributed encoding operations dictated by generator matrices of linear block codes. For this purpose, we make use of greedy codes over the binary field and show that desired diversity orders can be flexibly assigned to nodes in a multiple unicast network, contrary to the previous findings in the literature. Furthermore, we present the optimal detection rule for the given model that accounts for intermediate node errors and suggest a network decoder using the sum-product algorithm. The proposed sum-product detector exhibits near optimal performance.Comment: 6 pages, 5 figures, Submitted to WCNC 2012, IEEE Wireless Communication and Networking Conferenc

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Rate Aware Instantly Decodable Network Codes

    Get PDF
    This paper addresses the problem of reducing the delivery time of data messages to cellular users using instantly decodable network coding (IDNC) with physical-layer rate awareness. While most of the existing literature on IDNC does not consider any physical layer complications and abstract the model as equally slotted time for all users, this paper proposes a cross-layer scheme that incorporates the different channel rates of the various users in the decision process of both the transmitted message combinations and the rates with which they are transmitted. The consideration of asymmetric rates for receivers reflects more practical application scenarios and introduces a new trade-off between the choice of coding combinations for various receivers and the broadcasting rate for achieving shorter completion time. The completion time minimization problem in such scenario is first shown to be intractable. The problem is, thus, approximated by reducing, at each transmission, the increase of an anticipated version of the completion time. The paper solves the problem by formulating it as a maximum weight clique problem over a newly designed rate aware IDNC (RA-IDNC) graph. The highest weight clique in the created graph being potentially not unique, the paper further suggests a multi-layer version of the proposed solution to improve the obtained results from the employed completion time approximation. Simulation results indicate that the cross-layer design largely outperforms the uncoded transmissions strategies and the classical IDNC scheme

    MAC Centered Cooperation - Synergistic Design of Network Coding, Multi-Packet Reception, and Improved Fairness to Increase Network Throughput

    Get PDF
    We design a cross-layer approach to aid in develop- ing a cooperative solution using multi-packet reception (MPR), network coding (NC), and medium access (MAC). We construct a model for the behavior of the IEEE 802.11 MAC protocol and apply it to key small canonical topology components and their larger counterparts. The results obtained from this model match the available experimental results with fidelity. Using this model, we show that fairness allocation by the IEEE 802.11 MAC can significantly impede performance; hence, we devise a new MAC that not only substantially improves throughput, but provides fairness to flows of information rather than to nodes. We show that cooperation between NC, MPR, and our new MAC achieves super-additive gains of up to 6.3 times that of routing with the standard IEEE 802.11 MAC. Furthermore, we extend the model to analyze our MAC's asymptotic and throughput behaviors as the number of nodes increases or the MPR capability is limited to only a single node. Finally, we show that although network performance is reduced under substantial asymmetry or limited implementation of MPR to a central node, there are some important practical cases, even under these conditions, where MPR, NC, and their combination provide significant gains

    Algorithmic Aspects of Energy-Delay Tradeoff in Multihop Cooperative Wireless Networks

    Full text link
    We consider the problem of energy-efficient transmission in delay constrained cooperative multihop wireless networks. The combinatorial nature of cooperative multihop schemes makes it difficult to design efficient polynomial-time algorithms for deciding which nodes should take part in cooperation, and when and with what power they should transmit. In this work, we tackle this problem in memoryless networks with or without delay constraints, i.e., quality of service guarantee. We analyze a wide class of setups, including unicast, multicast, and broadcast, and two main cooperative approaches, namely: energy accumulation (EA) and mutual information accumulation (MIA). We provide a generalized algorithmic formulation of the problem that encompasses all those cases. We investigate the similarities and differences of EA and MIA in our generalized formulation. We prove that the broadcast and multicast problems are, in general, not only NP hard but also o(log(n)) inapproximable. We break these problems into three parts: ordering, scheduling and power control, and propose a novel algorithm that, given an ordering, can optimally solve the joint power allocation and scheduling problems simultaneously in polynomial time. We further show empirically that this algorithm used in conjunction with an ordering derived heuristically using the Dijkstra's shortest path algorithm yields near-optimal performance in typical settings. For the unicast case, we prove that although the problem remains NP hard with MIA, it can be solved optimally and in polynomial time when EA is used. We further use our algorithm to study numerically the trade-off between delay and power-efficiency in cooperative broadcast and compare the performance of EA vs MIA as well as the performance of our cooperative algorithm with a smart noncooperative algorithm in a broadcast setting.Comment: 12 pages, 9 figure

    On Coding for Reliable Communication over Packet Networks

    Full text link
    We present a capacity-achieving coding scheme for unicast or multicast over lossy packet networks. In the scheme, intermediate nodes perform additional coding yet do not decode nor even wait for a block of packets before sending out coded packets. Rather, whenever they have a transmission opportunity, they send out coded packets formed from random linear combinations of previously received packets. All coding and decoding operations have polynomial complexity. We show that the scheme is capacity-achieving as long as packets received on a link arrive according to a process that has an average rate. Thus, packet losses on a link may exhibit correlation in time or with losses on other links. In the special case of Poisson traffic with i.i.d. losses, we give error exponents that quantify the rate of decay of the probability of error with coding delay. Our analysis of the scheme shows that it is not only capacity-achieving, but that the propagation of packets carrying "innovative" information follows the propagation of jobs through a queueing network, and therefore fluid flow models yield good approximations. We consider networks with both lossy point-to-point and broadcast links, allowing us to model both wireline and wireless packet networks.Comment: 33 pages, 6 figures; revised appendi
    • …
    corecore