31,060 research outputs found

    Practical whole-system provenance capture

    Get PDF
    Data provenance describes how data came to be in its present form. It includes data sources and the transformations that have been applied to them. Data provenance has many uses, from forensics and security to aiding the reproducibility of scientific experiments. We present CamFlow, a whole-system provenance capture mechanism that integrates easily into a PaaS offering. While there have been several prior whole-system provenance systems that captured a comprehensive, systemic and ubiquitous record of a system’s behavior, none have been widely adopted. They either A) impose too much overhead, B) are designed for long-outdated kernel releases and are hard to port to current systems, C) generate too much data, or D) are designed for a single system. CamFlow addresses these shortcoming by: 1) leveraging the latest kernel design advances to achieve efficiency; 2) using a self-contained, easily maintainable implementation relying on a Linux Security Module, NetFilter, and other existing kernel facilities; 3) providing a mechanism to tailor the captured provenance data to the needs of the application; and 4) making it easy to integrate provenance across distributed systems. The provenance we capture is streamed and consumed by tenant-built auditor applications. We illustrate the usability of our implementation by describing three such applications: demonstrating compliance with data regulations; performing fault/intrusion detection; and implementing data loss prevention. We also show how CamFlow can be leveraged to capture meaningful provenance without modifying existing applications.Engineering and Applied Science

    Viewpoint | Personal Data and the Internet of Things: It is time to care about digital provenance

    Get PDF
    The Internet of Things promises a connected environment reacting to and addressing our every need, but based on the assumption that all of our movements and words can be recorded and analysed to achieve this end. Ubiquitous surveillance is also a precondition for most dystopian societies, both real and fictional. How our personal data is processed and consumed in an ever more connected world must imperatively be made transparent, and more effective technical solutions than those currently on offer, to manage personal data must urgently be investigated.Comment: 3 pages, 0 figures, preprint for Communication of the AC

    The lifecycle of provenance metadata and its associated challenges and opportunities

    Full text link
    This chapter outlines some of the challenges and opportunities associated with adopting provenance principles and standards in a variety of disciplines, including data publication and reuse, and information sciences

    Working with Legacy Media: A Lone Arranger\u27s First Steps

    Get PDF
    [Excerpt] In 2013, a naked hard drive from Fiji arriving in my small religious archives (an equivalent full-time staff of 2.5 – one archivist and two archives’ assistants) started me off on the path of digital preservation and, in particular, the digital forensics practices that are beneficial for archivists. With such a small staff, outsourced IT services, and no digital preservation policy in sight, it was time to start exploring how institutions of my size could manage legacy media and start planning for the born-digital archives that will continue to arrive. Since I hold a part-time position, I was able to undertake this exploration in my own time through the support provided by a scholarship from the Ian McLean Wards Memorial Trust in 2015

    Sharing and Preserving Computational Analyses for Posterity with encapsulator

    Get PDF
    Open data and open-source software may be part of the solution to science's "reproducibility crisis", but they are insufficient to guarantee reproducibility. Requiring minimal end-user expertise, encapsulator creates a "time capsule" with reproducible code in a self-contained computational environment. encapsulator provides end-users with a fully-featured desktop environment for reproducible research.Comment: 11 pages, 6 figure

    The Research Object Suite of Ontologies: Sharing and Exchanging Research Data and Methods on the Open Web

    Get PDF
    Research in life sciences is increasingly being conducted in a digital and online environment. In particular, life scientists have been pioneers in embracing new computational tools to conduct their investigations. To support the sharing of digital objects produced during such research investigations, we have witnessed in the last few years the emergence of specialized repositories, e.g., DataVerse and FigShare. Such repositories provide users with the means to share and publish datasets that were used or generated in research investigations. While these repositories have proven their usefulness, interpreting and reusing evidence for most research results is a challenging task. Additional contextual descriptions are needed to understand how those results were generated and/or the circumstances under which they were concluded. Because of this, scientists are calling for models that go beyond the publication of datasets to systematically capture the life cycle of scientific investigations and provide a single entry point to access the information about the hypothesis investigated, the datasets used, the experiments carried out, the results of the experiments, the people involved in the research, etc. In this paper we present the Research Object (RO) suite of ontologies, which provide a structured container to encapsulate research data and methods along with essential metadata descriptions. Research Objects are portable units that enable the sharing, preservation, interpretation and reuse of research investigation results. The ontologies we present have been designed in the light of requirements that we gathered from life scientists. They have been built upon existing popular vocabularies to facilitate interoperability. Furthermore, we have developed tools to support the creation and sharing of Research Objects, thereby promoting and facilitating their adoption.Comment: 20 page

    Meeting the design challenges of nano-CMOS electronics: an introduction to an upcoming EPSRC pilot project

    Get PDF
    The years of ‘happy scaling’ are over and the fundamental challenges that the semiconductor industry faces, at both technology and device level, will impinge deeply upon the design of future integrated circuits and systems. This paper provides an introduction to these challenges and gives an overview of the Grid infrastructure that will be developed as part of a recently funded EPSRC pilot project to address them, and we hope, which will revolutionise the electronics design industry
    • 

    corecore