15 research outputs found

    An Investigation of How Lighting and Rendering Technology Affects Filmmaking Relative to Arnold’s Transition to a GPU-Based Path-Tracer

    Get PDF
    Computer Graphic (CGI) technology enables artists to explore a broad spectrum of approaches and styles, from photorealistic to abstract, expanding the boundaries of traditional aesthetic choices. Recent years have witnessed of 3D-CGI production shift towards greater physical fidelity driven by technological developments as well as consumer demand for realistic visuals; this trend can be found across various creative fields like film, video games, and virtual reality experiences with high-quality textures, lighting, rendering, and physics simulations providing enhanced levels of immersion for users. Arnold is one of the famous rendering engines assisting artists to be more creative while producing photorealistic images. Moreover, Arnold renders the engine as one of the main path-tracing renderers and contributes significantly to more fantastic photorealistic productions. Also, Arnold renders not only Support CPU render but also support GPU rendering to take full advantage of faster computation times and real-time interactivity, among many other advantages. Because of that, this study investigates how new technology like developed GPUs helps artists and filmmakers better comprehend 3D rendering solutions that impact their workflows. On the other hand, philosophically exploring the relationship between making a creative decision and technology within 3D photorealistic rendering reveals an intricate yet dynamic relationship that informs the creative processes of both independent artists and small studios alike. This interaction serves as a reminder that Art is driven forward by its creator\u27s creative energy rather than simply technological capabilities; artists and studios can continue pushing limits by embracing this complex dialogue between creativity and tech, opening new paths within digital Art\u27s fast-evolving realm

    The 3D Acid Test: Perceptual Attributes vs Renderable Elements

    Get PDF
    The Romantics artificially embellished light and colour to convey emotion in their artworks. Light and colour were used to ignite a sense of enchantment and to stir an emotional response from the viewer. 3D software operates within this established visual tradition: current digital artistic representation involves a similarly embellished reality. This is a testament to what we continually want to see and how we would like to be visually entertained and informed, and physically based 3D renderer Arnold provides the tools for this continuation. Inherent in the world’s most-used 3D rendering programme Arnold are light and surface attributes which have been programmed to be adjustable to achieve myriad visual results. These attributes, however, have a history rooted in computer graphics’ plight for realism by abiding by the laws of optics and physics in their creation. However, these tools were designed with an arbitrarily chosen set of limits: arbitrary in the sense that these limits define a range of possibility to be used conveniently by the artist rather than by necessity or intrinsic nature. Johann Goethe (b. 1749), a Romantic poet, was critical of how light and colour were used by his artistic peers. He was dissatisfied by the embellishment of light and colour in paintings, and endeavoured to know exactly what was happening when he looked at things. Goethe conducted a series of experiments on light and colour, which resulted in his book Theory of Colours (1810, trans. Charles Eastlake, 1840). In my study, using Theory of Colours as a guideline, I have recreated fifty of Goethe’s experiments in 3D. I explore the fundamentals of Arnold as it was created, revealing the benchmark of current achievable 3D realism. Ten of these experiments are discussed in this paper. These experiments, in my judgment, are more applicable to the scope of phenomena replicable with a renderer, and scale the vast number of Goethe’s experiments in Theory of Colours to a reasonable set of testable conditions. The human perception of reality is the baseline against which rendering qualities must be judged, and Goethe’s experiments are replicable. As an instructor of 3D rendering, I aim to instill in my students the knowledge gained from this study, with the intention to empower the students with their own rendering so that they may make informed, predictable decisions

    Volume 56 - Issue 10 - May, 1946

    Get PDF
    https://scholar.rose-hulman.edu/technic/1157/thumbnail.jp

    Drawing from motion capture : developing visual languages of animation

    Get PDF
    The work presented in this thesis aims to explore novel approaches of combining motion capture with drawing and 3D animation. As the art form of animation matures, possibilities of hybrid techniques become more feasible, and crosses between traditional and digital media provide new opportunities for artistic expression. 3D computer animation is used for its keyframing and rendering advancements, that result in complex pipelines where different areas of technical and artistic specialists contribute to the end result. Motion capture is mostly used for realistic animation, more often than not for live-action filmmaking, as a visual effect. Realistic animated films depend on retargeting techniques, designed to preserve actors performances with a high degree of accuracy. In this thesis, we investigate alternative production methods that do not depend on retargeting, and provide animators with greater options for experimentation and expressivity. As motion capture data is a great source for naturalistic movements, we aim to combine it with interactive methods such as digital sculpting and 3D drawing. As drawing is predominately used in preproduction, in both the case of realistic animation and visual effects, we embed it instead to alternative production methods, where artists can benefit from improvisation and expression, while emerging in a three-dimensional environment. Additionally, we apply these alternative methods for the visual development of animation, where they become relevant for the creation of specific visual languages that can be used to articulate concrete ideas for storytelling in animation

    The New Hampshire, Vol. 75, No. 28 (Feb. 1, 1985)

    Get PDF
    The student publication of the University of New Hampshire

    The Murray Ledger and Times, June 5, 1999

    Get PDF

    The Murray Ledger and Times, June 8, 1996

    Get PDF

    The Murray Ledger and Times, November 15, 1984

    Get PDF

    The Murray Ledger and Times, December 23, 1995

    Get PDF

    The Murray Ledger and Times, March 22, 1997

    Get PDF
    corecore