1,512 research outputs found

    Towards Loop-Free Forwarding of Anonymous Internet Datagrams that Enforce Provenance

    Full text link
    The way in which addressing and forwarding are implemented in the Internet constitutes one of its biggest privacy and security challenges. The fact that source addresses in Internet datagrams cannot be trusted makes the IP Internet inherently vulnerable to DoS and DDoS attacks. The Internet forwarding plane is open to attacks to the privacy of datagram sources, because source addresses in Internet datagrams have global scope. The fact an Internet datagrams are forwarded based solely on the destination addresses stated in datagram headers and the next hops stored in the forwarding information bases (FIB) of relaying routers allows Internet datagrams to traverse loops, which wastes resources and leaves the Internet open to further attacks. We introduce PEAR (Provenance Enforcement through Addressing and Routing), a new approach for addressing and forwarding of Internet datagrams that enables anonymous forwarding of Internet datagrams, eliminates many of the existing DDoS attacks on the IP Internet, and prevents Internet datagrams from looping, even in the presence of routing-table loops.Comment: Proceedings of IEEE Globecom 2016, 4-8 December 2016, Washington, D.C., US

    An Efficient Analytical Solution to Thwart DDoS Attacks in Public Domain

    Full text link
    In this paper, an analytical model for DDoS attacks detection is proposed, in which propagation of abrupt traffic changes inside public domain is monitored to detect a wide range of DDoS attacks. Although, various statistical measures can be used to construct profile of the traffic normally seen in the network to identify anomalies whenever traffic goes out of profile, we have selected volume and flow measure. Consideration of varying tolerance factors make proposed detection system scalable to the varying network conditions and attack loads in real time. NS-2 network simulator on Linux platform is used as simulation testbed. Simulation results show that our proposed solution gives a drastic improvement in terms of detection rate and false positive rate. However, the mammoth volume generated by DDoS attacks pose the biggest challenge in terms of memory and computational overheads as far as monitoring and analysis of traffic at single point connecting victim is concerned. To address this problem, a distributed cooperative technique is proposed that distributes memory and computational overheads to all edge routers for detecting a wide range of DDoS attacks at early stage.Comment: arXiv admin note: substantial text overlap with arXiv:1203.240

    A survey of defense mechanisms against distributed denial of service (DDOS) flooding attacks

    Get PDF
    Distributed Denial of Service (DDoS) flooding attacks are one of the biggest concerns for security professionals. DDoS flooding attacks are typically explicit attempts to disrupt legitimate users' access to services. Attackers usually gain access to a large number of computers by exploiting their vulnerabilities to set up attack armies (i.e., Botnets). Once an attack army has been set up, an attacker can invoke a coordinated, large-scale attack against one or more targets. Developing a comprehensive defense mechanism against identified and anticipated DDoS flooding attacks is a desired goal of the intrusion detection and prevention research community. However, the development of such a mechanism requires a comprehensive understanding of the problem and the techniques that have been used thus far in preventing, detecting, and responding to various DDoS flooding attacks. In this paper, we explore the scope of the DDoS flooding attack problem and attempts to combat it. We categorize the DDoS flooding attacks and classify existing countermeasures based on where and when they prevent, detect, and respond to the DDoS flooding attacks. Moreover, we highlight the need for a comprehensive distributed and collaborative defense approach. Our primary intention for this work is to stimulate the research community into developing creative, effective, efficient, and comprehensive prevention, detection, and response mechanisms that address the DDoS flooding problem before, during and after an actual attack. © 1998-2012 IEEE

    TCP-SYN Flooding Attack in Wireless Networks

    Get PDF
    This paper concerns the TCP (Transmission Control Protocol) vulnerabilities which gives space for a DoS (Denial of Service) attacks called TCP-SYN flooding which is well-known to the community for several years. The paper shows this attack in wireless as well as wired networks using perl synflood script, Wireshark network analyzer server, Windows 2008 server, and OPNET simulation environment. Using these tools an effects of this attack are shown. Finally, some effective practical mitigation techniques against SYN flooding attack for Linux and Windows systems are explained
    • …
    corecore