476 research outputs found

    Efficient Solution of Large-Scale Algebraic Riccati Equations Associated with Index-2 DAEs via the Inexact Low-Rank Newton-ADI Method

    Full text link
    This paper extends the algorithm of Benner, Heinkenschloss, Saak, and Weichelt: An inexact low-rank Newton-ADI method for large-scale algebraic Riccati equations, Applied Numerical Mathematics Vol.~108 (2016), pp.~125--142, doi:10.1016/j.apnum.2016.05.006 to Riccati equations associated with Hessenberg index-2 Differential Algebratic Equation (DAE) systems. Such DAE systems arise, e.g., from semi-discretized, linearized (around steady state) Navier-Stokes equations. The solution of the associated Riccati equation is important, e.g., to compute feedback laws that stabilize the Navier-Stokes equations. Challenges in the numerical solution of the Riccati equation arise from the large-scale of the underlying systems and the algebraic constraint in the DAE system. These challenges are met by a careful extension of the inexact low-rank Newton-ADI method to the case of DAE systems. A main ingredient in the extension to the DAE case is the projection onto the manifold described by the algebraic constraints. In the algorithm, the equations are never explicitly projected, but the projection is only applied as needed. Numerical experience indicates that the algorithmic choices for the control of inexactness and line-search can help avoid subproblems with matrices that are only marginally stable. The performance of the algorithm is illustrated on a large-scale Riccati equation associated with the stabilization of Navier-Stokes flow around a cylinder.Comment: 21 pages, 2 figures, 4 table

    Differential-Algebraic Equations

    Get PDF
    Differential-Algebraic Equations (DAE) are today an independent field of research, which is gaining in importance and becoming of increasing interest for applications and mathematics itself. This workshop has drawn the balance after about 25 years investigations of DAEs and the research aims of the future were intensively discussed

    Non-constructive interval simulation of dynamic systems

    Get PDF
    Publisher PD

    Towards a UTP semantics for modelica

    Get PDF
    We describe our work on a UTP semantics for the dynamic systems modelling language Modelica. This is a language for modelling a system’s continuous behaviour using a combination of differential algebraic equations and an event-handling system. We develop a novel UTP theory of hybrid relations, inspired by Hybrid CSP and Duration Calculus, that is purely relational and provides uniform handling of continuous and discrete variables. This theory is mechanised in our Isabelle implementation of the UTP, Isabelle/UTP, with which we verify some algebraic properties. Finally, we show how a subset of Modelica models can be given semantics using our theory. When combined with the wealth of existing UTP theories for discrete system modelling, our work enables a sound approach to heterogeneous semantics for Cyber-Physical systems by leveraging the theory linking facilities of the UTP

    Construction of Adaptive Multistep Methods for Problems with Discontinuities, Invariants, and Constraints

    Get PDF
    Adaptive multistep methods have been widely used to solve initial value problems. These ordinary differential equations (ODEs) may arise from semi-discretization of time-dependent partial differential equations(PDEs) or may combine with some algebraic equations to represent a differential algebraic equations (DAEs).In this thesis we study the initialization of multistep methods and parametrize some well-known classesof multistep methods to obtain an adaptive formulation of those methods. The thesis is divided into three main parts; (re-)starting a multistep method, a polynomial formulation of strong stability preserving (SSP)multistep methods and parametric formulation of β\beta-blocked multistep methods.Depending on the number of steps, a multistep method requires adequate number of initial values tostart the integration. In the view of first part, we look at the available initialization schemes and introduce two family of Runge--Kutta methods derived to start multistep methods with low computational cost and accurate initial values.The proposed starters estimate the error by embedded methods.The second part concerns the variable step-size β\beta-blocked multistep methods. We use the polynomial formulation of multistep methods applied on ODEs to parametrize β\beta-blocked multistep methods forthe solution of index-2 Euler-Lagrange DAEs. The performance of the adaptive formulation is verified by some numerical experiments. For the last part, we apply a polynomial formulation of multistep methods to formulate SSP multistep methods that are applied for the solution of semi-discretized hyperbolic PDEs. This formulationallows time adaptivity by construction

    Stabilizability and optimal control of switched differential algebraic equations

    Get PDF
    In this thesis control of dynamical systems with switches is considered. Examples of such systems are electronic circuits and mechanical systems. The switches are induced by abrupt structural changes due to component failure or physical switches. In the case of constraints on the dynamics, the state of the system can only take certain values and not only differential equations are involved in modeling the system, but also algebraic equations. An important question in control problems is often how well a certain controller performs. Some controllers require little energy, but induce undesired behavior of the system, whereas others perform well in terms of the systems behavior but require a lot of energy. It turns out that in general an optimal controller does not exist. However, necessary and sufficient conditions for the existence of optimal controller given a quadratic cost functional are presented in this thesis. Besides quantitative properties also some qualitative properties are investigated. The systems considered exhibit discontinuous behavior and Dirac impulses, whereas especially Dirac impulses are practically undesirable. Dirac impulses occur in practice in the form of hydraulic shocks in fluid networks or sparks in electronic circuits. The possibility to avoid Dirac impulses is also studied and necessary and sufficient conditions are given

    Stability criteria for nonlinear fully implicit differential-algebraic systems

    Get PDF
    This thesis contributes to the qualitative theory of differential-algebraic equations(DAEs) by providing new stability criteria for solutions of a class of nonlinear, fully implicit DAEs with a properly stated derivative term and tractability index one and two. A generalization of the Andronov-Witt Theorem addressing orbital stability is proved. To this purpose, a state space representation of differential-algebraic systems based on the tractability index is developed which has advantageous properties, e.g. moderate smoothness requirements, commutativity with linearization and an autonomous structure in case of autonomous DAEs. It allows a suitable definition of characteristic multipliers referring to the inherent dynamics, but given in terms of the DAE. Furthermore, the fundamentals of Lyapunov's direct method with respect to diffe- rential-algebraic systems are worked out. Novel denitions of Lyapunov functions for differentiable solution components of a DAE are stated, where the monotoni- cally decreasing total time derivative of a Lyapunov function along DAE solutions is expressed in terms of the original system. The topology of the domain of the inherent dynamics turns out to be decisive for nonlocal existence of solutions given a Lyapunov function. As a result, practical stability criteria for bounded solutions of autonomous DAEs and for general solutions of DAEs with bounded partial derivatives of the constitutive function arise. Known contractivity denitions for DAEs can be interpreted in the context of this approach
    corecore