48,311 research outputs found

    Tight and simple Web graph compression

    Full text link
    Analysing Web graphs has applications in determining page ranks, fighting Web spam, detecting communities and mirror sites, and more. This study is however hampered by the necessity of storing a major part of huge graphs in the external memory, which prevents efficient random access to edge (hyperlink) lists. A number of algorithms involving compression techniques have thus been presented, to represent Web graphs succinctly but also providing random access. Those techniques are usually based on differential encodings of the adjacency lists, finding repeating nodes or node regions in the successive lists, more general grammar-based transformations or 2-dimensional representations of the binary matrix of the graph. In this paper we present two Web graph compression algorithms. The first can be seen as engineering of the Boldi and Vigna (2004) method. We extend the notion of similarity between link lists, and use a more compact encoding of residuals. The algorithm works on blocks of varying size (in the number of input lines) and sacrifices access time for better compression ratio, achieving more succinct graph representation than other algorithms reported in the literature. The second algorithm works on blocks of the same size, in the number of input lines, and its key mechanism is merging the block into a single ordered list. This method achieves much more attractive space-time tradeoffs.Comment: 15 page

    LINE: Large-scale Information Network Embedding

    Full text link
    This paper studies the problem of embedding very large information networks into low-dimensional vector spaces, which is useful in many tasks such as visualization, node classification, and link prediction. Most existing graph embedding methods do not scale for real world information networks which usually contain millions of nodes. In this paper, we propose a novel network embedding method called the "LINE," which is suitable for arbitrary types of information networks: undirected, directed, and/or weighted. The method optimizes a carefully designed objective function that preserves both the local and global network structures. An edge-sampling algorithm is proposed that addresses the limitation of the classical stochastic gradient descent and improves both the effectiveness and the efficiency of the inference. Empirical experiments prove the effectiveness of the LINE on a variety of real-world information networks, including language networks, social networks, and citation networks. The algorithm is very efficient, which is able to learn the embedding of a network with millions of vertices and billions of edges in a few hours on a typical single machine. The source code of the LINE is available online.Comment: WWW 201
    • …
    corecore