125 research outputs found

    Quantum Information with Continuous Variable systems

    Get PDF
    This thesis deals with the study of quantum communication protocols with Continuous Variable (CV) systems. Continuous Variable systems are those described by canonical conjugated coordinates x and p endowed with infinite dimensional Hilbert spaces, thus involving a complex mathematical structure. A special class of CV states, are the so-called Gaussian states. With them, it has been possible to implement certain quantum tasks as quantum teleportation, quantum cryptography and quantum computation with fantastic experimental success. The importance of Gaussian states is two-fold; firstly, its structural mathematical description makes them much more amenable than any other CV system. Secondly, its production, manipulation and detection with current optical technology can be done with a very high degree of accuracy and control. Nevertheless, it is known that in spite of their exceptional role within the space of all Continuous Variable states, in fact, Gaussian states are not always the best candidates to perform quantum information tasks. Thus non-Gaussian states emerge as potentially good candidates for communication and computation purposes.Comment: PhD Thesis in Universitat Autonoma de Barcelona. Published by the Lambert Academic Publishing (LAP) on March 18, 2011. ISBN-13: 978-3-8443-1948-

    Optical state engineering, quantum communication, and robustness of entanglement promiscuity in three-mode Gaussian states

    Full text link
    We present a novel, detailed study on the usefulness of three-mode Gaussian states states for realistic processing of continuous-variable quantum information, with a particular emphasis on the possibilities opened up by their genuine tripartite entanglement. We describe practical schemes to engineer several classes of pure and mixed three-mode states that stand out for their informational and/or entanglement properties. In particular, we introduce a simple procedure -- based on passive optical elements -- to produce pure three-mode Gaussian states with {\em arbitrary} entanglement structure (upon availability of an initial two-mode squeezed state). We analyze in depth the properties of distributed entanglement and the origin of its sharing structure, showing that the promiscuity of entanglement sharing is a feature peculiar to symmetric Gaussian states that survives even in the presence of significant degrees of mixedness and decoherence. Next, we discuss the suitability of the considered tripartite entangled states to the implementation of quantum information and communication protocols with continuous variables. This will lead to a feasible experimental proposal to test the promiscuous sharing of continuous-variable tripartite entanglement, in terms of the optimal fidelity of teleportation networks with Gaussian resources. We finally focus on the application of three-mode states to symmetric and asymmetric telecloning, and single out the structural properties of the optimal Gaussian resources for the latter protocol in different settings. Our analysis aims to lay the basis for a practical quantum communication with continuous variables beyond the bipartite scenario.Comment: 33 pages, 10 figures (some low-res due to size constraints), IOP style; (v2) improved and reorganized, accepted for publication in New Journal of Physic

    Quantum Cryptography Beyond Quantum Key Distribution

    Get PDF
    Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation, secure two- and multi-party computation and delegated quantum computation. Quantum cryptography also studies the limitations and challenges resulting from quantum adversaries---including the impossibility of quantum bit commitment, the difficulty of quantum rewinding and the definition of quantum security models for classical primitives. In this review article, aimed primarily at cryptographers unfamiliar with the quantum world, we survey the area of theoretical quantum cryptography, with an emphasis on the constructions and limitations beyond the realm of QKD.Comment: 45 pages, over 245 reference

    Quantum entanglement

    Get PDF
    All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory}. But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy. This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding. However, it appeared that this new resource is very complex and difficult to detect. Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure. This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying. In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations. They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon. A basic role of entanglement witnesses in detection of entanglement is emphasized.Comment: 110 pages, 3 figures, ReVTex4, Improved (slightly extended) presentation, updated references, minor changes, submitted to Rev. Mod. Phys

    Practical unconditionally secure signature schemes and related protocols

    Get PDF
    The security guarantees provided by digital signatures are vital to many modern applications such as online banking, software distribution, emails and many more. Their ubiquity across digital communications arguably makes digital signatures one of the most important inventions in cryptography. Worryingly, all commonly used schemes – RSA, DSA and ECDSA – provide only computational security, and are rendered completely insecure by quantum computers. Motivated by this threat, this thesis focuses on unconditionally secure signature (USS) schemes – an information theoretically secure analogue of digital signatures. We present and analyse two new USS schemes. The first is a quantum USS scheme that is both information-theoretically secure and realisable with current technology. The scheme represents an improvement over all previous quantum USS schemes, which were always either realisable or had a full security proof, but not both. The second is an entirely classical USS scheme that uses minimal resources and is vastly more efficient than all previous schemes, to such an extent that it could potentially find real-world application. With the discovery of such an efficient classical USS scheme using only minimal resources, it is difficult to see what advantage quantum USS schemes may provide. Lastly, we remain in the information-theoretic security setting and consider two quantum protocols closely related to USS schemes – oblivious transfer and quantum money. For oblivious transfer, we prove new lower bounds on the minimum achievable cheating probabilities in any 1-out-of-2 protocol. For quantum money, we present a scheme that is more efficient and error tolerant than all previous schemes. Additionally, we show that it can be implemented using a coherent source and lossy detectors, thereby allowing for the first experimental demonstration of quantum coin creation and verification

    Practical limitations on robustness and scalability of quantum Internet

    Full text link
    As quantum theory allows for information processing and computing tasks that otherwise are not possible with classical systems, there is a need and use of quantum Internet beyond existing network systems. At the same time, the realization of a desirably functional quantum Internet is hindered by fundamental and practical challenges such as high loss during transmission of quantum systems, decoherence due to interaction with the environment, fragility of quantum states, etc. We study the implications of these constraints by analyzing the limitations on the scaling and robustness of quantum Internet. Considering quantum networks, we present practical bottlenecks for secure communication, delegated computing, and resource distribution among end nodes. Motivated by the power of abstraction in graph theory (in association with quantum information theory), we consider graph-theoretic quantifiers to assess network robustness and provide critical values of communication lines for viable communication over quantum Internet. In particular, we begin by discussing limitations on usefulness of isotropic states as device-independent quantum key repeaters which otherwise could be useful for device-independent quantum key distribution. We consider some quantum networks of practical interest, ranging from satellite-based networks connecting far-off spatial locations to currently available quantum processor architectures within computers, and analyze their robustness to perform quantum information processing tasks. Some of these tasks form primitives for delegated quantum computing, e.g., entanglement distribution and quantum teleportation. For some examples of quantum networks, we present algorithms to perform different quantum network tasks of interest such as constructing the network structure, finding the shortest path between a pair of end nodes, and optimizing the flow of resources at a node.Comment: Happy about the successful soft landing of Chandrayaan-3 on the moon by ISRO. 35 pages, 32 figures. Preliminary versio
    corecore