3,643 research outputs found

    mTOSSIM: A simulator that estimates battery lifetime in wireless sensor networks

    Get PDF
    Knowledge of the battery lifetime of the wireless sensor network is important for many situations, such as in evaluation of the location of nodes or the estimation of the connectivity, along time, between devices. However, experimental evaluation is a very time-consuming task. It depends on many factors, such as the use of the radio transceiver or the distance between nodes. Simulations reduce considerably this time. They allow the evaluation of the network behavior before its deployment. This article presents a simulation tool which helps developers to obtain information about battery state. This simulator extends the well-known TOSSIM simulator. Therefore it is possible to evaluate TinyOS applications using an accurate model of the battery consumption and its relation to the radio power transmission. Although an specific indoor scenario is used in testing of simulation, the simulator is not limited to this environment. It is possible to work in outdoor scenarios too. Experimental results validate the proposed model.Junta de AndalucĂ­a P07-TIC-02476Junta de AndalucĂ­a TIC-570

    From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites

    Get PDF
    In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy–graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical conductivity and thermal mechanical behaviour. Graphene platelets (GnPs) of 3.5

    Rate-distortion Balanced Data Compression for Wireless Sensor Networks

    Get PDF
    This paper presents a data compression algorithm with error bound guarantee for wireless sensor networks (WSNs) using compressing neural networks. The proposed algorithm minimizes data congestion and reduces energy consumption by exploring spatio-temporal correlations among data samples. The adaptive rate-distortion feature balances the compressed data size (data rate) with the required error bound guarantee (distortion level). This compression relieves the strain on energy and bandwidth resources while collecting WSN data within tolerable error margins, thereby increasing the scale of WSNs. The algorithm is evaluated using real-world datasets and compared with conventional methods for temporal and spatial data compression. The experimental validation reveals that the proposed algorithm outperforms several existing WSN data compression methods in terms of compression efficiency and signal reconstruction. Moreover, an energy analysis shows that compressing the data can reduce the energy expenditure, and hence expand the service lifespan by several folds.Comment: arXiv admin note: text overlap with arXiv:1408.294

    VLIT NODE Sensor Technology and Prefarm

    Get PDF
    Precision farming systems are based on a detailed monitoring of information and data that are necessary for successful decision-making in crop production. The system is designed for data collection from several resources. In past years an extensive research and development work has been done in the field of wireless sensor networks (WSN) in the world. When a wireless sensor network (WSN) is used for agricultural purposes, it has to provide first of all a long-reach signal. The present paper describes new long distance RFID based technology implementation - VLIT NODE.Wireless Sensor Network, Precision Agriculture, RFID., Research and Development/Tech Change/Emerging Technologies, Research Methods/ Statistical Methods, GA, IN,

    Benchmarking for wireless sensor networks

    Get PDF

    Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm

    Get PDF
    Offshore Wind has become the most profitable renewable energy source due to the remarkable development it has experienced in Europe over the last decade. In this paper, a review of Structural Health Monitoring Systems (SHMS) for offshore wind turbines (OWT) has been carried out considering the topic as a Statistical Pattern Recognition problem. Therefore, each one of the stages of this paradigm has been reviewed focusing on OWT application. These stages are: Operational Evaluation; Data Acquisition, Normalization and Cleansing; Feature Extraction and Information Condensation; and Statistical Model Development. It is expected that optimizing each stage, SHMS can contribute to the development of efficient Condition-Based Maintenance Strategies. Optimizing this strategy will help reduce labor costs of OWTsŚł inspection, avoid unnecessary maintenance, identify design weaknesses before failure, improve the availability of power production while preventing wind turbinesŚł overloading, therefore, maximizing the investmentsŚł return. In the forthcoming years, a growing interest in SHM technologies for OWT is expected, enhancing the potential of offshore wind farm deployments further offshore. Increasing efficiency in operational management will contribute towards achieving UKŚłs 2020 and 2050 targets, through ultimately reducing the Levelised Cost of Energy (LCOE)

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF
    • 

    corecore