49 research outputs found

    Design, Implementation and Evaluation of an In-House Controller for Software Defined Networking with Applications

    Get PDF
    Over the past several decades, there has been a dramatic improvement in net- working technologies. Network devices and protocols are becoming more powerful and complex. The vertical structure of the network protocol layers also leads to a coupled control plane and data plane in data frames. To solve this issue from a structural level, researchers introduced a new architecture of networking, the Software Defined Networking (SDN). By decoupling the control plane and data plane from a frame level and aggregating the protocols into software run in a centralized controller dynamically, engineers obtained a new way to build and control a network dynamically in real time. Meanwhile, with the development of Internet of Things (IoT), data volume from mobile devices and low power terminals are dramatically increasing. However, the traditional cloud computing is still in a relatively centralized architecture, which causes huge traffic volume of IoT applications in the network. To this end, researchers proposed the concept of Edge Computing, which utilizes the capacity of the edge nodes in the network to process data and aggregate data from terminals. This research introduces In-House Controller of SDN which has a distributed characteristic and deployed within SDN nodes to minimize the costs in control plane communication. The In-House controller also enables data processing and aggregation capacity in access points which host these functionalities as SDN applications. To research the system performance of the In-House controller in different application scenarios, in this work, following applications were studied: Data flow aggregation of Message Queue Telemetry Transport (MQTT) protocol in Internet of Things, an MQTT proxy in edge switch which is aggregating short MQTT flows from multiple clients into a long MQTT flow to reduce the control plane traffic overhead in TCP. A novel delay tolerant network architecture and a new convergence layer over MQTT protocol in opportunistic networking. Using in-house controller as host and event scheduler for Delay Tolerant Network (DTN) modules and convergence layers which run as applications guest applications in the controller. With the study of applications, this research also proposed a generalized framework named as SDN Docker which support dynamically docking and un-docking applications in network devices with the help of the In-House controller

    Top 10 technologies and their impact on CPA\u27s

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/2474/thumbnail.jp

    Optimization of emerging extended FTTH WDM/TDM PONs and financial overall assessment

    Get PDF
    Optical access technology has experienced a boost in the last years, thanks to the continuously migrating multimedia services that are offered over the internet. Though the technologies used for deploying Fiber-To-The-x (FTTx) and Fiber-to-the-Home (FTTH) are mostly based on either Active solutions or as far as Passsive Optical Networks (PONs) is concerned, in Time Division Multiplexing (TDM), an evolution towards Hybrid solutions such as Wavelength Division Multiplexing/Time Division Multiplexing (WDM/TDM) can be foreseen. What needs to be researched and finally established are the exact designs for this important step of integration, which should be optimized in terms of transmission performance and cost, to address all requirements of next-generation passive optical networks. As the most critical elements in optical access network, the design and its cost are the main topics of this discussion. The covered topics span over a wide range and include cost estimation of several optical network technologies - architectures and their comparison and furthermore, subjects of design optimization. In this last category, in-line remote amplification, use of an alternative and an extended frequency band, dispersion compensation and equalization techniques have been examined as well as a combination of the aforementioned means of network optimization. Next to the principal proof of the proposed techniques, the benefits are highlighted in different case studies, while the most representative designs are further discussed

    Využití softwarově definovaného rádia v oblasti SMART technologii

    Get PDF
    Modern telecommunication systems are rapidly evolving. This rapid development requires constant research and fast prototyping. This dissertation thesis focusses on deployment of software defined radio (SDR) in multiple application areas, including SMART technologies. SDR itself is a tool behind many breakthroughs in modern telecommunications, due to its major adaptability. It offers a comprehensive way of fast prototyping, which rely on suitable software platform. The field of telecommunications is ever-changing, due to the constant pressure on innovation. For this reason, it is desirable to test some of the alternative communication technologies. Visible light communication (VLC) system based on combination of virtual instrumentation and software defined radios was chosen for experimentation. This dissertation focusses on multiple versions of VLC system that were developed over the years. Each version is further discussed, and their advantages and disadvantages are presented. A draft of fourth and newest version is mentioned along with possible directions of the research. Results from multiple application areas are presented, which show the adaptability of the whole platform to different use cases including but not limited to: SMART technologies, automotive, nuclear waste disposal sites, or industry. It is demonstrated that the newest version of the system, which is based on OFDM modulation, can communicate up to 50 meters in closed environments and up to 35 meters in outdoor scenarios. This opens further research directions such as truck platooning or underwater communications.Moderní komunikační systémy jsou jednou z nejrychleji se rozvíjejících oblastí. Takového markantního posunu lze dosáhnout pouze skrze nový vývoj a aplikaci metodiky fast prototypingu. Tato disertace se zaměřuje na nasazení technologie softwarově definovaného rádia (SDR) v různých aplikačních oblastech. Samotné SDR je díky své adaptabilitě nástrojem, který stál na pozadí rozvoje mnoha moderních telekomunikačních systémů. Jedná se o ucelenou platformu pro fast prototyping, která se opírá o robustní softwarovou základnu. Právě telekomunikace jsou oblastí, kde je takové zařízení nedocenitelné, právě kvůli neustálému tlaku na inovace. Právě to je důvodem, proč je vhodné také testovat různé alternativní technologie pro přenos dat. Jednou z takových je komunikace viditelným spektrem světla (VLC), která je náplní této práce. Součástí praktické části je vývoj a popis několika verzí VLC systému založených na virtuální instrumentaci a SDR, které vznikly během autorova studia. Každá verze je samostatně popsána včetně výhod a nevýhod, které poskytují. Součástí je též první náčrt čtvrté verze, která bude součástí budoucího výzkumu. Prezentované výsledky z různých aplikačních oblastí jasně ukazují, že je celou platformu možné použít v různých aplikačních oblastech, včetně SMART technologií, automotive, úložišti jaderného odpadu anebo Průmyslu 4.0. Součástí jsou též výsledky z poslední verze, které dokazují, že je systém ve vnitřních prostorech komunikovat až na vzdálenost 50 metrů, zatímco ve venkovních podmínkách je to 35 metrů. Díky tomu je možné vytyčit nové oblasti výzkumu jako je například platooning (tandemová jízda) anebo podvodní komunikace.450 - Katedra kybernetiky a biomedicínského inženýrstvívyhově

    Research and Technology 1996: Innovation in Time and Space

    Get PDF
    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1996 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities
    corecore