828 research outputs found

    Applications of nonlinear diffusion in image processing and computer vision

    Get PDF
    Nonlinear diffusion processes can be found in many recent methods for image processing and computer vision. In this article, four applications are surveyed: nonlinear diffusion filtering, variational image regularization, optic flow estimation, and geodesic active contours. For each of these techniques we explain the main ideas, discuss theoretical properties and present an appropriate numerical scheme. The numerical schemes are based on additive operator splittings (AOS). In contrast to traditional multiplicative splittings such as ADI, LOD or D'yakonov splittings, all axes are treated in the same manner, and additional possibilities for efficient realizations on parallel and distributed architectures appear. Geodesic active contours lead to equations that resemble mean curvature motion. For this application, a novel AOS scheme is presented that uses harmonie averaging and does not require reinitializations of the distance function in each iteration step

    Neural Networks for Modeling and Control of Particle Accelerators

    Full text link
    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.Comment: 21 p

    Automatic surrogate model type selection during the optimization of expensive black-box problems

    Get PDF
    The use of Surrogate Based Optimization (SBO) has become commonplace for optimizing expensive black-box simulation codes. A popular SBO method is the Efficient Global Optimization (EGO) approach. However, the performance of SBO methods critically depends on the quality of the guiding surrogate. In EGO the surrogate type is usually fixed to Kriging even though this may not be optimal for all problems. In this paper the authors propose to extend the well-known EGO method with an automatic surrogate model type selection framework that is able to dynamically select the best model type (including hybrid ensembles) depending on the data available so far. Hence, the expected improvement criterion will always be based on the best approximation available at each step of the optimization process. The approach is demonstrated on a structural optimization problem, i.e., reducing the stress on a truss-like structure. Results show that the proposed algorithm consequently finds better optimums than traditional kriging-based infill optimization

    Efficient Method Based on Blockchain Ensuring Data Integrity Auditing with Deduplication in Cloud

    Get PDF
    With the rapid development of cloud storage, more and more cloud clients can store and access their data anytime, from anywhere and using any device. Data deduplication may be considered an excellent choice to ensure data storage efficiency. Although cloud technology offers many advantages for storage service, it also introduces security challenges, especially with regards to data integrity, which is one of the most critical elements in any system. A data owner should thus enable data integrity auditing mechanisms. Much research has recently been undertaken to deal with these issues. In this paper, we propose a novel blockchain-based method, which can preserve cloud data integrity checking with data deduplication. In our method, a mediator performs data deduplication on the client side, which permits a reduction in the amount of outsourced data and a decrease in the computation time and the bandwidth used between the enterprise and the cloud service provider. This method supports private and public auditability. Our method also ensures the confidentiality of a client's data against auditors during the auditing process

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Automated Regulation of LiDAR Detection Range with Model-Guided Extremum Seeking Control

    Get PDF
    LiDAR detection is susceptible to ambient interference. Therefore, it is important to maintain LiDAR detection performance when it operates autonomously in varying environments. In this paper, an optimization approach is proposed to automatically regulate LiDAR detection range through a model-guided extremum seeking control (ESC) against the variation of ambient conditions. A neural network model is trained with experimental LiDAR data off-line to simulate the impact of ambient conditions, and an Environmental Index (EI) is proposed to classify the ambient conditions. In order to obtain the optimal LiDAR detection range for each classified ambient condition, a designed cost function is used to obtain off-line solutions for each ambient condition. In order to deal with modelling uncertainties, an on-line optimization algorithm, ESC, is employed with initial conditions originating in the results of off-line optimization. The effectiveness of this model-guided ESC mechanism is then validated with experiments involving a real LiDAR on a mobile carrier
    • …
    corecore