334 research outputs found

    Wireless Sensor Network for Monitoring Rice Crop Growth

    Get PDF
    For observation of rice plants continuously against climatic influences of rice plants in the vegetative stage,reproductive stage, ripening stage by measuring the pH level, temperature, soil moisture using the technology of WirelessSensor Network (WSN). The purpose of this study to monitor climate effects on the growth of rice plants with the technologyWireless sensor network (WSN). The design and implementation of WSN based on Zigbee platform and Arduino withobservation method involve monitoring the change of indicator of each sensor node, distance parameter, delay parameter oneach rice growth. Testing the performance of WSN through parameter RSSI (receive signal strength indicator) between the enddevice and the coordinator through software applications XCTU do at every stage of rice growth. Test results at a distance of100 meters obtained the average value of RSSI in the vegetative stage of -80.40 dBm, at the reproductive stage of -83.72 dBm,and at the ripening stage of -84.44 dBm. The WSN implementation, testing using cluster tree topology is done at a different time.The test is performed between the sensor node to the node coordinator in the topology of the cluster tree in different areas. Theresult of the measurement of data delivery delay is 312ms for the area of 1 hectare of rice field at 120 days of age with the nodenumber of 7 units. Furthermore, with the node number 7 units, 376ms for the paddy field with 2 hectare area. The results ofWSN implementation experiments on 2 hectares of rice farming area can provide real time information so as to contribute inagriculture when there is a change of climatic conditions or sudden pest diseases that affect the results of rice crop productivityand food security

    Wireless Sensor Network for Monitoring Rice Crop Growth

    Get PDF
    For continuous observation of rice plants on the influence of climate on rice plants in the vegetation stage, reproductive stage, the ripening stage through measuring pH, temperature, soil moisture using Wireless Sensor Network (WSN) technology. The purpose of this study is to monitor the influence of climate on the growth of rice plants with Wireless sensor network (WSN) technology, then proposed the design and implementation of zigbee platform and Arduino-based WSN with observation methods including monitoring indicator changes for each sensor node, distance parameters, delay parameters for each growth rice. WSN performance testing through RSSI (receive signal strength indicator) parameters between end devices and coordinators through the XCTU software application is carried out at each stage of rice growth. Test results at a distance of 100 meters obtained the average value of RSSI at the vegetative stage of -80.40 dBm, at the reproductive stage of -83.72 dBm, and at the Ripening stage of -84.44 dBm. Testing the WSN implementation using cluster tree topology is done at different times. The test is carried out between sensor nodes to the coordinator node in the cluster tree topology in different areas. The measurement results of data transmission delay is 312ms for an area of 1 hectare of rice at 120 days of rice with 7 units of nodes. Furthermore, with the number of 7 units of nodes, 376ms is obtained for rice fields with an area of 2 hectare, at 120 days of rice. The results of the WSN implementation experiment on a 2 hectare rice farming area can provide real-time information so as to contribute to agriculture when climate conditions change or sudden pest attacks that have an impact on rice crop productivity and food security. Keywords: WSN, Zigbee Platform, Arduino, Topologi cluster tree, RSSI

    Unlocking Solar Power For Surveillance A Review Of Solar Powered CCTV And Surveillance Technologies

    Get PDF
    Solar-powered surveillance technologies have gained prominence for their sustainable, autonomous, and versatile solutions. This comprehensive review explores three key solar-powered surveillance technologies: solar-powered CCTV cameras, solar drones, and solar-powered sensor networks. Each technology offers distinct strengths and weaknesses, making them suitable for various applications. Solar-powered CCTV cameras provide adaptability, energy independence, and rapid deployment, while solar drones offer an aerial perspective, extended endurance, and versatility. Solar-powered sensor networks excel in localized environmental monitoring. The choice of technology depends on factors such as the surveillance environment, budget constraints, required surveillance range, and specific monitoring needs. Organizations can benefit from hybrid solutions that integrate multiple technologies for comprehensive coverage. Future trends include advanced energy storage solutions, AI integration, enhanced power efficiency, and cloud-based data analytics, promising to improve performance and sustainability. Public-private collaborations and sustainable urban planning initiatives will drive further adoption and integration. Solar-powered surveillance technologies empower effective and environmentally sustainable surveillance solutions, contributing to a safer and more sustainable future

    Review of intelligent sprinkler irrigation technologies for remote autonomous system

    Get PDF
    Changing of environmental conditions and shortage of water demands a system that can manage irrigation efficiently. Autonomous irrigation systems are developed to optimize water use for agricultural crops. In dry areas or in case of inadequate rainfall, irrigation becomes difficult. So, it needs to be automated for proper yield and handled remotely for farmer safety. The aim of this study is to review the needs of soil moisture sensors in irrigation, sensor technology and their applications in irrigation scheduling and, discussing prospects. The review further discusses the literature of sensors remotely communicating with self-propelled sprinkler irrigation systems, distributed wireless sensor networks, sensors and integrated data management schemes and autonomous sprinkler control options. On board and field-distributed sensors can collect data necessary for real-time irrigation management decisions and transmit the information directly or through wireless networks to the main control panel or base computer. Communication systems such as cell phones, satellite radios, and internet-based systems are also available allowing the operator to query the main control panel or base computer from any location at any time. Selection of the communication system for remote access depends on local and regional topography and cost. Traditional irrigation systems may provide unnecessary irrigation to one part of a field while leading to a lack of irrigation in other parts. New sensors or remotely sensing capabilities are required to collect real time data for crop growth status and other parameters pertaining to weather, crop and soil to support intelligent and efficient irrigation management systems for agricultural processes. Further development of wireless sensor applications in agriculture is also necessary for increasing efficiency, productivity and profitability of farming operations

    Energy harvesting and wireless transfer in sensor network applications: Concepts and experiences

    Get PDF
    Advances in micro-electronics and miniaturized mechanical systems are redefining the scope and extent of the energy constraints found in battery-operated wireless sensor networks (WSNs). On one hand, ambient energy harvesting may prolong the systems lifetime or possibly enable perpetual operation. On the other hand, wireless energy transfer allows systems to decouple the energy sources from the sensing locations, enabling deployments previously unfeasible. As a result of applying these technologies to WSNs, the assumption of a finite energy budget is replaced with that of potentially infinite, yet intermittent, energy supply, profoundly impacting the design, implementation, and operation of WSNs. This article discusses these aspects by surveying paradigmatic examples of existing solutions in both fields and by reporting on real-world experiences found in the literature. The discussion is instrumental in providing a foundation for selecting the most appropriate energy harvesting or wireless transfer technology based on the application at hand. We conclude by outlining research directions originating from the fundamental change of perspective that energy harvesting and wireless transfer bring about

    Ag-IoT for crop and environment monitoring: Past, present, and future

    Get PDF
    CONTEXT: Automated monitoring of the soil-plant-atmospheric continuum at a high spatiotemporal resolution is a key to transform the labor-intensive, experience-based decision making to an automatic, data-driven approach in agricultural production. Growers could make better management decisions by leveraging the real-time field data while researchers could utilize these data to answer key scientific questions. Traditionally, data collection in agricultural fields, which largely relies on human labor, can only generate limited numbers of data points with low resolution and accuracy. During the last two decades, crop monitoring has drastically evolved with the advancement of modern sensing technologies. Most importantly, the introduction of IoT (Internet of Things) into crop, soil, and microclimate sensing has transformed crop monitoring into a quantitative and data-driven work from a qualitative and experience-based task. OBJECTIVE: Ag-IoT systems enable a data pipeline for modern agriculture that includes data collection, transmission, storage, visualization, analysis, and decision-making. This review serves as a technical guide for Ag-IoT system design and development for crop, soil, and microclimate monitoring. METHODS: It highlighted Ag-IoT platforms presented in 115 academic publications between 2011 and 2021 worldwide. These publications were analyzed based on the types of sensors and actuators used, main control boards, types of farming, crops observed, communication technologies and protocols, power supplies, and energy storage used in Ag-IoT platforms

    Plant microbial fuel cell in paddy field : A power source for rural area

    Get PDF
    As an energy carrier, electricity access is one of important aspect for human development. There is a positive correlation between electricity consumption per capita and human development index (HDI) and also gross domestic product (GDP).  However, the world electrification is not equally distributed. Most of those who do not have electricity access live in rural areas and located in developing countries. In these area, some people use polluted kerosene lamps as their light source or expensive gasoline generator as their electricity source. Other than that, battery is also widely used as a power source. In addition to the unequal electrification, the world electricity generation is still dominated by fossil fuel sources that have a negative impact on the environment, increased health risk and global climate change. Therefore, it is important to shift from conventional energy source to low-carbon renewable electricity sources. This thesis “Plant Microbial Fuel Cell in Paddy Field: a power source for rural area“ aims to assess the applicability of the plant  microbial fuel cell (Plant-MFC) as a low power off-grid power source in a rural area for a theoretical Indonesian case. To achieve this, a technical design was made for a household in rural area of Indonesia based on the latest research developments. Then, the applicability was assessed on technical, social, and environmental safety and health criteria as well as economics and some scenarios were suggested which could improve the real application. Values for a plant-MFC system to fulfil basic electricity needs were calculated. The main highlights and findings on this work are summarized in accordance with the chapters outlined in this thesis as following. Chapter 2 “Marine Sediment Mixed with Activated Carbon Allows Electricity Production and Storage from Internal and External Energy Sources: A New Rechargeable Bio-Battery with Bi-Directional Electron Transfer Properties” investigates the abilities of marine sediment and activated carbon to store and generate electricity in a bio-battery. In this work, several mixture of marine sediment and activated carbon were studied in a bio electrochemical system (BES). When operated in the MFC mode, the system generated electricity with solely marine sediment as the anode electron donor, resulted in the creation of a bio-battery. The results show that by usage of marine sediment and activated carbon (AC) electricity was generated and stored. The internal electrical storage density is 0.3 mWh/kg AC marine anode.  These insights give opportunities to apply such BES systems as e.g. ex-situ bio-battery to store and use electricity for off-grid purpose in remote areas. Chapter 3 “Activated Carbon Mixed with Marine Sediment is Suitable as Bioanode Material for Spartina anglica Sediment/Plant Microbial Fuel Cell: Plant Growth, Electricity Generation, and Spatial Microbial Community Diversity” aims to investigate the suitability of a mixture of activated carbon and marine sediment as a bioanode in a plant-MFC system with Spartina anglica. This work focused on study how different mixtures of the activated carbon (AC) and the marine sediment (MS) as an anode material affected the plant vitality, electricity generation and spatial microbial community. Results show that Spartina anglica grew in all of the plant-MFCs, although the growth was less fertile in the 100% activated carbon Plant-MFC. On long-term (2 weeks) performance, mixture of 33% and 67% marine sediment outperformed other Plant-MFCs in terms of current density (16.1 mA/m2 plant growth area) and power density (1.04 mW/m2 plant growth area). Results also show a high diversity of microbial communities dominated by Proteobacteria and indicates that the bacterial communities were affected by the anode composition. These findings show that the mixture of activated carbon and marine sediment are suitable material for bioanodes and could be useful for the application of Plant-MFC in a real wetland. Chapter 4 “Performance and Long Distance Data Acquisition via LoRa Technology of a Tubular Plant Microbial Fuel Cell Located in a Paddy Field in West Kalimantan, Indonesia” provide an insight about the field performance of tubular Plant-MFC. In this study, one-meter tubular Plant-MFC with graphite felt anode and cathode were installed in triplicates in a paddy field for four rice growth seasons. An online data acquisition using LoRa technology was developed to investigate the performance of the tubular Plant-MFC over the final whole rice paddy growing season. The result revealed that the Plant-MFC do not negatively affect the rice growth. A continuous electricity generation was achieved during a wet period in the crop season. On average the Plant-MFC generated power of 6.6 mW/m2 plant growth area (0.4mW per meter tube). The Plant-MFC also shows a potential to be used as a bio sensor, e.g. rain event indicator, during a dry period between the crop seasons. Chapter 5 “A Thin Layer of Activated Carbon Deposited on Polyurethane Cube Leads to New Conductive Bioanode for (Plant) Microbial Fuel Cell” exploits the potential of electrochemically active self-assembled biofilms to fabricate three-dimensional bio electrodes for of (plant) microbial fuel cells with minimum use of electrode materials. For this purpose, polyurethane foams coated with activated carbon was prepared and studied as platform bio anodes for harvesting electric current in lab microbial fuel cells (MFCs) and field Plant-MFCs. Results show that electric conductivity of the PU/AC electrode enhance over time during bioanode development. The maximum current and power density of an acetate fed MFC reached 3mA/m2 projected surface area of anode compartment and 22mW/m3 anode compartment. The field test of the Plant-MFC reached a maximum performance of 0.9 mW/m2 plant growth area at a current density of 5.6 mA/ m2 PGA. A rice paddy field test showed that the PU/AC electrode was suitable as anode material in combination with a graphite felt cathode.  Finally, the main findings of this thesis are summarized and discussed in Chapter 6, “General Discussion”. In this chapter, a theoretical available power for Plant-MFC system from a paddy field is presented to give an insight how far performance of current Plant-MFC meets theoretical understanding. Based on the experimental results, this chapter answers the thesis goal to discuss the applicability of the Plant-MFC as an off-grid power source in a rural area by assessing its technical, economic, social, and environmental safety and health criteria. Finally, an outlook for future Plant-MFC application is provided

    Utilization of Internet of Things and wireless sensor networks for sustainable smallholder agriculture

    Get PDF
    Agriculture is the economy’s backbone for most developing countries. Most of these countries suffer from insufficient agricultural production. The availability of real-time, reliable and farm-specific information may significantly contribute to more sufficient and sustained production. Typically, such information is usually fragmented and often does fit one-on-one with the farm or farm plot. Automated, precise and affordable data collection and dissemination tools are vital to bring such information to these levels. The tools must address details of spatial and temporal variability. The Internet of Things (IoT) and wireless sensor networks (WSNs) are useful technology in this respect. This paper investigates the usability of IoT and WSN for smallholder agriculture applications. An in-depth qualitative and quantitative analysis of relevant work over the past decade was conducted. We explore the type and purpose of agricultural parameters, study and describe available resources, needed skills and technological requirements that allow sustained deployment of IoT and WSN technology. Our findings reveal significant gaps in utilization of the technology in the context of smallholder farm practices caused by social, economic, infrastructural and technological barriers. We also identify a significant future opportunity to design and implement affordable and reliable data acquisition tools and frameworks, with a possible integration of citizen science
    corecore