111,806 research outputs found

    Software reliability and dependability: a roadmap

    Get PDF
    Shifting the focus from software reliability to user-centred measures of dependability in complete software-based systems. Influencing design practice to facilitate dependability assessment. Propagating awareness of dependability issues and the use of existing, useful methods. Injecting some rigour in the use of process-related evidence for dependability assessment. Better understanding issues of diversity and variation as drivers of dependability. Bev Littlewood is founder-Director of the Centre for Software Reliability, and Professor of Software Engineering at City University, London. Prof Littlewood has worked for many years on problems associated with the modelling and evaluation of the dependability of software-based systems; he has published many papers in international journals and conference proceedings and has edited several books. Much of this work has been carried out in collaborative projects, including the successful EC-funded projects SHIP, PDCS, PDCS2, DeVa. He has been employed as a consultant t

    Developments in the Safety Science Domain and in Safety Management From the 1970s Till the 1979 Near Disaster at Three Mile Island

    Get PDF
    Objective: What has been the influence of general management schools and safety research into causes of accidents and disasters on managing safety from 1970 till 1979? Method: The study was limited to original articles and documents, written in English or Dutch from the period under concern. For the Netherlands, the professional journal De Veiligheid (Safety) has been consulted. Results and conclusions: Dominant management approaches started with 1) the classical management starting from the 19th century, with scientific management from the start of the 20st century as a main component. During the interwar period 2) behavioural management started, based on behaviourism, followed by 3) quantitative management from the Second World War onwards. After the war 4) modern management became important. A company was seen as an open system, interacting with an external environment with external stakeholders. These schools management were not exclusive, but have existed in the period together. Early 20th century, the U.S. 'Safety First' movement was the starting point of this knowledge development on managing safety, with cost reduction and production efficiency as key drivers. Psychological models and metaphors explained accidents from ‘unsafe acts’. And safety was managed with training and selection of reckless workers, all in line with scientific management. Supported by behavioural management, this approach remained dominant for many years, even long after World War II. Influenced by quantitative management, potential and actual disasters after the war led to two approaches; loss prevention (up-scaling process industry) and reliability engineering (inherently dangerous processes in the aerospace and nuclear industries). The distinction between process safety and occupational safety became clear after the war, and the two developed into relatively independent domains. In occupational safety in the 1970s human errors thought to be symptoms of mismanagement. The term ‘safety management’ was introduced in scientific safety literature as well as concepts as loose, and tightly coupled processes, organizational culture, incubation of a disaster and mechanisms blinding organizations for portents of disaster scenarios. Loss prevention remained technically oriented. Till 1979 there was no clear relation with safety management. Reliability engineering, based on systems theory did have that relation with the MORT technique as a management audit. The Netherlands mainly followed Anglo-Saxon developments. Late 1970s, following international safety symposia in The Hague and Delft, independent research started in The Netherland

    The safety case and the lessons learned for the reliability and maintainability case

    Get PDF
    This paper examine the safety case and the lessons learned for the reliability and maintainability case

    Why We Cannot (Yet) Ensure the Cybersecurity of Safety-Critical Systems

    Get PDF
    There is a growing threat to the cyber-security of safety-critical systems. The introduction of Commercial Off The Shelf (COTS) software, including Linux, specialist VOIP applications and Satellite Based Augmentation Systems across the aviation, maritime, rail and power-generation infrastructures has created common, vulnerabilities. In consequence, more people now possess the technical skills required to identify and exploit vulnerabilities in safety-critical systems. Arguably for the first time there is the potential for cross-modal attacks leading to future ‘cyber storms’. This situation is compounded by the failure of public-private partnerships to establish the cyber-security of safety critical applications. The fiscal crisis has prevented governments from attracting and retaining competent regulators at the intersection of safety and cyber-security. In particular, we argue that superficial similarities between safety and security have led to security policies that cannot be implemented in safety-critical systems. Existing office-based security standards, such as the ISO27k series, cannot easily be integrated with standards such as IEC61508 or ISO26262. Hybrid standards such as IEC 62443 lack credible validation. There is an urgent need to move beyond high-level policies and address the more detailed engineering challenges that threaten the cyber-security of safety-critical systems. In particular, we consider the ways in which cyber-security concerns undermine traditional forms of safety engineering, for example by invalidating conventional forms of risk assessment. We also summarise the ways in which safety concerns frustrate the deployment of conventional mechanisms for cyber-security, including intrusion detection systems

    Advancing Stability in an Era of Change

    Get PDF
    Argues for an integrated grantmaking strategy for world security, stewardship, and the peaceful management of change. Focuses on the individual, the nation-state, civil society organizations, private sector corporations, and multilateral institutions

    Think Tank Review Issue 72 November 2019

    Get PDF

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme
    • …
    corecore