36,823 research outputs found

    Fast Polynomial Multiplication over F_(2^60)

    No full text
    Can post-Schönhage–Strassen multiplication algorithms be competitive in practice for large input sizes? So far, the GMP library still outperforms all implementations of the recent, asymptotically more efficient algorithms for integer multiplication by Fürer, De–Kurur–Saha–Saptharishi, and ourselves. In this paper, we show how central ideas of our recent asymptotically fast algorithms turn out to be of practical interest for multiplication of polynomials over finite fields of characteristic two. Our Mathemagix implementation is based on the automatic generation of assembly codelets. It outperforms existing implementations in large degree, especially for polynomial matrix multiplication over finite fields

    On Polynomial Multiplication in Chebyshev Basis

    Full text link
    In a recent paper Lima, Panario and Wang have provided a new method to multiply polynomials in Chebyshev basis which aims at reducing the total number of multiplication when polynomials have small degree. Their idea is to use Karatsuba's multiplication scheme to improve upon the naive method but without being able to get rid of its quadratic complexity. In this paper, we extend their result by providing a reduction scheme which allows to multiply polynomial in Chebyshev basis by using algorithms from the monomial basis case and therefore get the same asymptotic complexity estimate. Our reduction allows to use any of these algorithms without converting polynomials input to monomial basis which therefore provide a more direct reduction scheme then the one using conversions. We also demonstrate that our reduction is efficient in practice, and even outperform the performance of the best known algorithm for Chebyshev basis when polynomials have large degree. Finally, we demonstrate a linear time equivalence between the polynomial multiplication problem under monomial basis and under Chebyshev basis

    Complexity Analysis of Reed-Solomon Decoding over GF(2^m) Without Using Syndromes

    Get PDF
    For the majority of the applications of Reed-Solomon (RS) codes, hard decision decoding is based on syndromes. Recently, there has been renewed interest in decoding RS codes without using syndromes. In this paper, we investigate the complexity of syndromeless decoding for RS codes, and compare it to that of syndrome-based decoding. Aiming to provide guidelines to practical applications, our complexity analysis differs in several aspects from existing asymptotic complexity analysis, which is typically based on multiplicative fast Fourier transform (FFT) techniques and is usually in big O notation. First, we focus on RS codes over characteristic-2 fields, over which some multiplicative FFT techniques are not applicable. Secondly, due to moderate block lengths of RS codes in practice, our analysis is complete since all terms in the complexities are accounted for. Finally, in addition to fast implementation using additive FFT techniques, we also consider direct implementation, which is still relevant for RS codes with moderate lengths. Comparing the complexities of both syndromeless and syndrome-based decoding algorithms based on direct and fast implementations, we show that syndromeless decoding algorithms have higher complexities than syndrome-based ones for high rate RS codes regardless of the implementation. Both errors-only and errors-and-erasures decoding are considered in this paper. We also derive tighter bounds on the complexities of fast polynomial multiplications based on Cantor's approach and the fast extended Euclidean algorithm.Comment: 11 pages, submitted to EURASIP Journal on Wireless Communications and Networkin

    Fast integer multiplication using generalized Fermat primes

    Get PDF
    For almost 35 years, Sch{\"o}nhage-Strassen's algorithm has been the fastest algorithm known for multiplying integers, with a time complexity O(n ×\times log n ×\times log log n) for multiplying n-bit inputs. In 2007, F{\"u}rer proved that there exists K > 1 and an algorithm performing this operation in O(n ×\times log n ×\times K log n). Recent work by Harvey, van der Hoeven, and Lecerf showed that this complexity estimate can be improved in order to get K = 8, and conjecturally K = 4. Using an alternative algorithm, which relies on arithmetic modulo generalized Fermat primes, we obtain conjecturally the same result K = 4 via a careful complexity analysis in the deterministic multitape Turing model

    Fast algorithms for computing isogenies between ordinary elliptic curves in small characteristic

    Get PDF
    The problem of computing an explicit isogeny between two given elliptic curves over F_q, originally motivated by point counting, has recently awaken new interest in the cryptology community thanks to the works of Teske and Rostovstev & Stolbunov. While the large characteristic case is well understood, only suboptimal algorithms are known in small characteristic; they are due to Couveignes, Lercier, Lercier & Joux and Lercier & Sirvent. In this paper we discuss the differences between them and run some comparative experiments. We also present the first complete implementation of Couveignes' second algorithm and present improvements that make it the algorithm having the best asymptotic complexity in the degree of the isogeny.Comment: 21 pages, 6 figures, 1 table. Submitted to J. Number Theor

    FNT-based reed-solomon erasure codes

    Get PDF
    This paper presents a new construction of Maximum-Distance Separable (MDS) Reed-Solomon erasure codes based on Fermat Number Transform (FNT). Thanks to FNT, these codes support practical coding and decoding algorithms with complexity O(n log n), where n is the number of symbols of a codeword. An open-source implementation shows that the encoding speed can reach 150Mbps for codes of length up to several 10,000s of symbols. These codes can be used as the basic component of the Information Dispersal Algorithm (IDA) system used in a several P2P systems

    Computational linear algebra over finite fields

    Get PDF
    We present here algorithms for efficient computation of linear algebra problems over finite fields
    corecore