3,179 research outputs found

    A Lock Free Approach To Parallelize The Cellular Potts Model: Application To Ductal Carcinoma In Situ

    Get PDF
    In the field of computational biology, in order to simulate multiscale biological systems, the Cellular Potts Model (CPM) has been used, which determines the actions that simulated cells can perform by determining a hamiltonian of energy that takes into account the influence that neighboring cells exert, under a wide range of parameters. There are some proposals in the literature that parallelize the CPM; in all cases, either lockbased techniques or other techniques that require large amounts of information to be disseminated among parallel tasks are used to preserve data coherence. In both cases, computational performance is limited. This work proposes an alternative approach for the parallelization of the model that uses transactional memory to maintain the coherence of the information. A Java implementation has been applied to the simulation of the ductal adenocarcinoma of breast in situ (DCIS). Times and speedups of the simulated execution of the model on the cluster of our university are analyzed. The results show a good speedup

    DART-MPI: An MPI-based Implementation of a PGAS Runtime System

    Full text link
    A Partitioned Global Address Space (PGAS) approach treats a distributed system as if the memory were shared on a global level. Given such a global view on memory, the user may program applications very much like shared memory systems. This greatly simplifies the tasks of developing parallel applications, because no explicit communication has to be specified in the program for data exchange between different computing nodes. In this paper we present DART, a runtime environment, which implements the PGAS paradigm on large-scale high-performance computing clusters. A specific feature of our implementation is the use of one-sided communication of the Message Passing Interface (MPI) version 3 (i.e. MPI-3) as the underlying communication substrate. We evaluated the performance of the implementation with several low-level kernels in order to determine overheads and limitations in comparison to the underlying MPI-3.Comment: 11 pages, International Conference on Partitioned Global Address Space Programming Models (PGAS14

    An aspect-oriented framework for orthogonal persistence

    Get PDF
    The life cycle of software applications in general is very short and with extreme volatile requirements. Within these conditions programmers need development tools and techniques with an extreme level of productivity. We consider the code reuse as the most prominent approach to solve that problem. Our proposal uses the advantages provided by the Aspect-Oriented Programming in order to build a reusable framework capable to turn both programmer and application oblivious as far as data persistence is concerned, thus avoiding the need to write any line of code about that concern. Besides the benefits to productivity, the software quality increases. This paper describes the actual state of the art, identifying the main challenge to build a complete and reusable framework for Orthogonal Persistence in concurrent environments with support for transactions. The present work also includes a successfully developed prototype of that framework, capable of freeing the programmer of implementing any read or write data operations. This prototype is supported by an object oriented database and, in the future, will also use a relational database and have support for transactions
    • …
    corecore