52,667 research outputs found

    Estimates for practical quantum cryptography

    Get PDF
    In this article I present a protocol for quantum cryptography which is secure against attacks on individual signals. It is based on the Bennett-Brassard protocol of 1984 (BB84). The security proof is complete as far as the use of single photons as signal states is concerned. Emphasis is given to the practicability of the resulting protocol. For each run of the quantum key distribution the security statement gives the probability of a successful key generation and the probability for an eavesdropper's knowledge, measured as change in Shannon entropy, to be below a specified maximal value.Comment: Authentication scheme corrected. Other improvements of presentatio

    Eavesdropping on practical quantum cryptography

    Get PDF
    Practical implementations of quantum cryptography use attenuated laser pulses as the signal source rather than single photons. The channels used to transmit are also lossy. Here we give a simple derivation of two beam-splitting attacks on quantum cryptographic systems using laser pulses, either coherent or mixed states with any mean photon number. We also give a simple derivation of a photon-number splitting attack, the most advanced, both in terms of performance and technology required. We find bounds on the maximum disturbance for a given mean photon number and observed channel transmission efficiency for which a secret key can be distilled. We start by reviewing two incoherent attacks that can be used on single photon quantum cryptographic systems. These results are then adapted to systems that use laser pulses and lossy channels.Comment: to appear in J. Mod. Op

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    Quantum cryptography: a practical information security perspective

    Get PDF
    Quantum Key Exchange (QKE, also known as Quantum Key Distribution or QKD) allows communicating parties to securely establish cryptographic keys. It is a well-established fact that all QKE protocols require that the parties have access to an authentic channel. Without this authenticated link, QKE is vulnerable to man-in-the-middle attacks. Overlooking this fact results in exaggerated claims and/or false expectations about the potential impact of QKE. In this paper we present a systematic comparison of QKE with traditional key establishment protocols in realistic secure communication systems.Comment: 5 pages, new title, published version, minor changes onl

    Beating the PNS attack in practical quantum cryptography

    Full text link
    In practical quantum key distribution, weak coherent state is often used and the channel transmittance can be very small therefore the protocol could be totally insecure under the photon-number-splitting attack. We propose an efficient method to verify the upper bound of the fraction of counts caused by multi-photon pluses transmitted from Alice to Bob, given whatever type of Eve's action. The protocol simply uses two coherent states for the signal pulses and vacuum for decoy pulse. Our verified upper bound is sufficiently tight for QKD with very lossy channel, in both asymptotic case and non-asymptotic case. The coherent states with mean photon number from 0.2 to 0.5 can be used in practical quantum cryptography. We show that so far our protocol is the onlyonly decoy-state protocol that really works for currently existing set-ups.Comment: So far this is the unique decoy-state protocol which really works efficiently in practice. Prior art results are commented in both main context and the Appendi
    • …
    corecore