54 research outputs found

    Biosurveillance: Detecting, Tracking, and Mitigating the Effects of Natural Disease and Bioterrorism

    Get PDF
    Encyclopedia of Operations Research and the Management Sciences, Cochran, J.J. (ed.), John Wiley & Sons Ltd.The article of record as published may be located at http://dx.doi.org/10.1002/9780470400531Biosurveillance is the regular collection, analysis, and interpretation of health and health related data for indicators of diseases and other outbreaks by public health organizations. Motivated by the threat of bioterrorism, biosurviellance systems are being developed and implemented around the world. The goal of these systems has been expanded to include both early event detection and situational awareness, so that the focus is not simply on detection, but also on response and consequence management. Whether they rae useful for detecting bioterrorism or not, there seems to be consensus that these biosurveillance systems are likely to be useful for detecting bioterrorism or not, there seems to be consensus that these biosurveillance systems are likely to be useful for detecting and responding to naural disease outbreaks such as seasonal and pandemic flu, and thus they have potential to significantly advance and modernize the practice of public health surveillance

    Method selection and adaptation for distributed monitoring of infectious diseases for syndromic surveillance

    Get PDF
    AbstractBackgroundAutomated surveillance systems require statistical methods to recognize increases in visit counts that might indicate an outbreak. In prior work we presented methods to enhance the sensitivity of C2, a commonly used time series method. In this study, we compared the enhanced C2 method with five regression models.MethodsWe used emergency department chief complaint data from US CDC BioSense surveillance system, aggregated by city (total of 206 hospitals, 16 cities) during 5/2008–4/2009. Data for six syndromes (asthma, gastrointestinal, nausea and vomiting, rash, respiratory, and influenza-like illness) was used and was stratified by mean count (1–19, 20–49, ⩾50 per day) into 14 syndrome-count categories. We compared the sensitivity for detecting single-day artificially-added increases in syndrome counts. Four modifications of the C2 time series method, and five regression models (two linear and three Poisson), were tested. A constant alert rate of 1% was used for all methods.ResultsAmong the regression models tested, we found that a Poisson model controlling for the logarithm of total visits (i.e., visits both meeting and not meeting a syndrome definition), day of week, and 14-day time period was best. Among 14 syndrome-count categories, time series and regression methods produced approximately the same sensitivity (<5% difference) in 6; in six categories, the regression method had higher sensitivity (range 6–14% improvement), and in two categories the time series method had higher sensitivity.DiscussionWhen automated data are aggregated to the city level, a Poisson regression model that controls for total visits produces the best overall sensitivity for detecting artificially added visit counts. This improvement was achieved without increasing the alert rate, which was held constant at 1% for all methods. These findings will improve our ability to detect outbreaks in automated surveillance system data

    Multivariate syndromic surveillance for cattle diseases: Epidemic simulation and algorithm performance evaluation.

    Get PDF
    Multivariate Syndromic Surveillance (SyS) systems that simultaneously assess and combine information from different data sources are especially useful for strengthening surveillance systems for early detection of infectious disease epidemics. Despite the strong motivation for implementing multivariate SyS and there being numerous methods reported, the number of operational multivariate SyS systems in veterinary medicine is still very small. One possible reason is that assessing the performance of such surveillance systems remains challenging because field epidemic data are often unavailable. The objective of this study is to demonstrate a practical multivariate event detection method (directionally sensitive multivariate control charts) that can be easily applied in livestock disease SyS, using syndrome time series data from the Swiss cattle population as an example. We present a standardized method for simulating multivariate epidemics of different diseases using four diseases as examples: Bovine Virus Diarrhea (BVD), Infectious Bovine Rhinotracheitis (IBR), Bluetongue virus (BTV) and Schmallenberg virus (SV). Two directional multivariate control chart algorithms, Multivariate Exponentially Weighted Moving Average (MEWMA) and Multivariate Cumulative Sum (MCUSUM) were compared. The two algorithms were evaluated using 12 syndrome time series extracted from two Swiss national databases. The two algorithms were able to detect all simulated epidemics around 4.5 months after the start of the epidemic, with a specificity of 95%. However, the results varied depending on the algorithm and the disease. The MEWMA algorithm always detected epidemics earlier than the MCUSUM, and epidemics of IBR and SV were detected earlier than epidemics of BVD and BTV. Our results show that the two directional multivariate control charts are promising methods for combining information from multiple time series for early detection of subtle changes in time series from a population without producing an unreasonable amount of false alarms. The approach that we used for simulating multivariate epidemics is relatively easy to implement and could be used in other situations where real epidemic data are unavailable. We believe that our study results can support the implementation and assessment of multivariate SyS systems in animal health

    Improving public health preparedness : strengthening biosurveillance systems for enhanced situational awareness

    Get PDF
    This report is designed to aid state, territorial, tribal, and local public health leaders as they improve their capacity to achieve situational awareness during a public health emergency. We intend this report to serve as a concise reference work public health leaders can use to help design and manage biosurveillance systems to be used during an anticipated public health emergency. We hope public health staff will find it helpful in answering the question, \u201cWhat information do I need to support decision making during a public health emergency and how do I get this information?\u201d To address this question, we focused on information needs for situational awareness using three scenarios: a mass gathering, a natural disaster, or a large outbreak.During these events, information on population health status, health risks, and health services must be readily available to those managing the public health response to the event (Figure 1). This report lists \u201ccore\u201d information needed to effectively manage the public health aspects of an event such as an outbreak, a natural disaster, or a mass gathering. Furthermore, the report describes guiding principles and system capabilities that assure surveillance information systems meet relevant standards, while addressing the need for flexibility to adapt to unique and changing circumstances.We intend for the report\u2019s findings and recommendations to be used by CDC grantees to prioritize activities related to the use of Public Health Emergency Preparedness (PHEP) funding (as well as funding from other CDC cooperative agreements) in the development, maintenance, and optimization of biosurveillance systems. In particular, we intend that our findings and recommendations will delineate specific action steps which will complement and supplement existing guidance contained in the recently developed PHEP capabilities.This research was carried out by the North Carolina Preparedness and Emergency Response Research Center (NCPERRC) at the University of North Carolina at Chapel Hill\u2019s Gillings School of Global Public Health and was supported by the Centers for Disease Control and Prevention (CDC) Grant 1PO1 TP 000296.BiosurvReport_092013.pdfgrant 1PO1 TP00029

    Approaches to the evaluation of outbreak detection methods

    Get PDF
    BACKGROUND: An increasing number of methods are being developed for the early detection of infectious disease outbreaks which could be naturally occurring or as a result of bioterrorism; however, no standardised framework for examining the usefulness of various outbreak detection methods exists. To promote comparability between studies, it is essential that standardised methods are developed for the evaluation of outbreak detection methods. METHODS: This analysis aims to review approaches used to evaluate outbreak detection methods and provide a conceptual framework upon which recommendations for standardised evaluation methods can be based. We reviewed the recently published literature for reports which evaluated methods for the detection of infectious disease outbreaks in public health surveillance data. Evaluation methods identified in the recent literature were categorised according to the presence of common features to provide a conceptual basis within which to understand current approaches to evaluation. RESULTS: There was considerable variation in the approaches used for the evaluation of methods for the detection of outbreaks in public health surveillance data, and appeared to be no single approach of choice. Four main approaches were used to evaluate performance, and these were labelled the Descriptive, Derived, Epidemiological and Simulation approaches. Based on the approaches identified, we propose a basic framework for evaluation and recommend the use of multiple approaches to evaluation to enable a comprehensive and contextualised description of outbreak detection performance. CONCLUSION: The varied nature of performance evaluation demonstrated in this review supports the need for further development of evaluation methods to improve comparability between studies. Our findings indicate that no single approach can fulfil all evaluation requirements. We propose that the cornerstone approaches to evaluation identified provide key contributions to support internal and external validity and comparability of study findings, and suggest these be incorporated into future recommendations for performance assessment

    Syndromic surveillance: reports from a national conference, 2003

    Get PDF
    Overview of Syndromic Surveillance -- What is Syndromic Surveillance? -- Linking Better Surveillance to Better Outcomes -- Review of the 2003 National Syndromic Surveillance Conference - Lessons Learned and Questions To Be Answered -- -- System Descriptions -- New York City Syndromic Surveillance Systems -- Syndrome and Outbreak Detection Using Chief-Complaint Data - Experience of the Real-Time Outbreak and Disease Surveillance Project -- Removing a Barrier to Computer-Based Outbreak and Disease Surveillance - The RODS Open Source Project -- National Retail Data Monitor for Public Health Surveillance -- National Bioterrorism Syndromic Surveillance Demonstration Program -- Daily Emergency Department Surveillance System - Bergen County, New Jersey -- Hospital Admissions Syndromic Surveillance - Connecticut, September 2001-November 2003 -- BioSense - A National Initiative for Early Detection and Quantification of Public Health Emergencies -- Syndromic Surveillance at Hospital Emergency Departments - Southeastern Virginia -- -- Research Methods -- Bivariate Method for Spatio-Temporal Syndromic Surveillance -- Role of Data Aggregation in Biosurveillance Detection Strategies with Applications from ESSENCE -- Scan Statistics for Temporal Surveillance for Biologic Terrorism -- Approaches to Syndromic Surveillance When Data Consist of Small Regional Counts -- Algorithm for Statistical Detection of Peaks - Syndromic Surveillance System for the Athens 2004 Olympic Games -- Taming Variability in Free Text: Application to Health Surveillance -- Comparison of Two Major Emergency Department-Based Free-Text Chief-Complaint Coding Systems -- How Many Illnesses Does One Emergency Department Visit Represent? Using a Population-Based Telephone Survey To Estimate the Syndromic Multiplier -- Comparison of Office Visit and Nurse Advice Hotline Data for Syndromic Surveillance - Baltimore-Washington, D.C., Metropolitan Area, 2002 -- Progress in Understanding and Using Over-the-Counter Pharmaceuticals for Syndromic Surveillance -- -- Evaluation -- Evaluation Challenges for Syndromic Surveillance - Making Incremental Progress -- Measuring Outbreak-Detection Performance By Using Controlled Feature Set Simulations -- Evaluation of Syndromic Surveillance Systems - Design of an Epidemic Simulation Model -- Benchmark Data and Power Calculations for Evaluating Disease Outbreak Detection Methods -- Bio-ALIRT Biosurveillance Detection Algorithm Evaluation -- ESSENCE II and the Framework for Evaluating Syndromic Surveillance Systems -- Conducting Population Behavioral Health Surveillance by Using Automated Diagnostic and Pharmacy Data Systems -- Evaluation of an Electronic General-Practitioner-Based Syndromic Surveillance System -- National Symptom Surveillance Using Calls to a Telephone Health Advice Service - United Kingdom, December 2001-February 2003 -- Field Investigations of Emergency Department Syndromic Surveillance Signals - New York City -- Should We Be Worried? Investigation of Signals Generated by an Electronic Syndromic Surveillance System - Westchester County, New York -- -- Public Health Practice -- Public Health Information Network - Improving Early Detection by Using a Standards-Based Approach to Connecting Public Health and Clinical Medicine -- Information System Architectures for Syndromic Surveillance -- Perspective of an Emergency Physician Group as a Data Provider for Syndromic Surveillance -- SARS Surveillance Project - Internet-Enabled Multiregion Surveillance for Rapidly Emerging Disease -- Health Information Privacy and Syndromic Surveillance SystemsPapers from the second annual National Syndromic Surveillance Conference convened by the New York City Department of Health and Mental Hygiene, the New York Academy of Medicine, and the CDC in New York City during Oct. 23-24, 2003. Published as the September 24, 2004 supplement to vol. 53 of MMWR. Morbidity and mortality weekly report.1571461
    • …
    corecore