38 research outputs found

    RSA Power Analysis Obfuscation: A Dynamic FPGA Architecture

    Get PDF
    The modular exponentiation operation used in popular public key encryption schemes, such as RSA, has been the focus of many side channel analysis (SCA) attacks in recent years. Current SCA attack countermeasures are largely static. Given sufficient signal-to-noise ratio and a number of power traces, static countermeasures can be defeated, as they merely attempt to hide the power consumption of the system under attack. This research develops a dynamic countermeasure which constantly varies the timing and power consumption of each operation, making correlation between traces more difficult than for static countermeasures. By randomizing the radix of encoding for Booth multiplication and randomizing the window size in exponentiation, this research produces a SCA countermeasure capable of increasing RSA SCA attack protection

    Fast, compact and secure implementation of rsa on dedicated hardware

    Get PDF
    RSA is the most popular Public Key Cryptosystem (PKC) and is heavily used today. PKC comes into play, when two parties, who have previously never met, want to create a secure channel between them. The core operation in RSA is modular multiplication, which requires lots of computational power especially when the operands are longer than 1024-bits. Although today’s powerful PC’s can easily handle one RSA operation in a fraction of a second, small devices such as PDA’s, cell phones, smart cards, etc. have limited computational power, thus there is a need for dedicated hardware which is specially designed to meet the demand of this heavy calculation. Additionally, web servers, which thousands of users can access at the same time, need to perform many PKC operations in a very short time and this can create a performance bottleneck. Special algorithms implemented on dedicated hardware can take advantage of true massive parallelism and high utilization of the data path resulting in high efficiency in terms of both power and execution time while keeping the chip cost low. We will use the “Montgomery Modular Multiplication” algorithm in our implementation, which is considered one of the most efficient multiplication schemes, and has many applications in PKC. In the first part of the thesis, our “2048-bit Radix-4 based Modular Multiplier” design is introduced and compared with the conventional radix-2 modular multipliers of previous works. Our implementation for 2048-bit modular multiplication features up to 82% shorter execution time with 33% increase in the area over the conventional radix-2 designs and can achieve 132 MHz on a Xilinx xc2v6000 FPGA. The proposed multiplier has one of the fastest execution times in terms of latency and performs better than (37% better) our reference radix-2 design in terms of time-area product. The results are similar in the ASIC case where we implement our design for UMC 0.18 μm technology. In the second part, a fast, efficient, and parameterized modular multiplier and a secure exponentiation circuit intended for inexpensive FPGAs are presented. The design utilizes hardwired block multipliers as the main functional unit and Block-RAM as storage unit for the operands. The adopted design methodology allows adjusting the number of multipliers, the radix used in the multipliers, and number of words to meet the system requirements such as available resources, precision and timing constraints. The deployed method is based on the Montgomery modular multiplication algorithm and the architecture utilizes a pipelining technique that allows concurrent operation of hardwired multipliers. Our design completes 1020-bit and 2040-bit modular multiplications* in 7.62 μs and 27.0 μs respectively with approximately the same device usage on Xilinx Spartan-3E 500. The multiplier uses a moderate amount of system resources while achieving the best area-time product in literature. 2040-bit modular exponentiation engine easily fits into Xilinx Spartan-3E 500; moreover the exponentiation circuit withstands known side channel attacks with an insignificant overhead in area and execution time. The upper limit on the operand precision is dictated only by the available Block-RAM to accommodate the operands within the FPGA. This design is also compared to the first one, considering the relative advantages and disadvantages of each circuit

    Attacking post-quantum cryptography

    Get PDF

    Attacking post-quantum cryptography

    Get PDF

    On the Security of Leakage Resilient Public Key Cryptography

    Get PDF
    Side channel attacks, where an attacker learns some physical information about the state of a device, are one of the ways in which cryptographic schemes are broken in practice. "Provably secure" schemes are subject to these attacks since the traditional models of security do not account for them. The theoretical community has recently proposed leakage resilient cryptography in an effort to account for side channel attacks in the security model. This thesis provides an in-depth look into what security guarantees public key leakage resilient schemes provide in practice

    Efficient and Secure ECDSA Algorithm and its Applications: A Survey

    Get PDF
    Public-key cryptography algorithms, especially elliptic curve cryptography (ECC)and elliptic curve digital signature algorithm (ECDSA) have been attracting attention frommany researchers in different institutions because these algorithms provide security andhigh performance when being used in many areas such as electronic-healthcare, electronicbanking,electronic-commerce, electronic-vehicular, and electronic-governance. These algorithmsheighten security against various attacks and the same time improve performanceto obtain efficiencies (time, memory, reduced computation complexity, and energy saving)in an environment of constrained source and large systems. This paper presents detailedand a comprehensive survey of an update of the ECDSA algorithm in terms of performance,security, and applications

    Profiling side-channel attacks on cryptographic algorithms

    Get PDF
    Traditionally, attacks on cryptographic algorithms looked for mathematical weaknesses in the underlying structure of a cipher. Side-channel attacks, however, look to extract secret key information based on the leakage from the device on which the cipher is implemented, be it smart-card, microprocessor, dedicated hardware or personal computer. Attacks based on the power consumption, electromagnetic emanations and execution time have all been practically demonstrated on a range of devices to reveal partial secret-key information from which the full key can be reconstructed. The focus of this thesis is power analysis, more specifically a class of attacks known as profiling attacks. These attacks assume a potential attacker has access to, or can control, an identical device to that which is under attack, which allows him to profile the power consumption of operations or data flow during encryption. This assumes a stronger adversary than traditional non-profiling attacks such as differential or correlation power analysis, however the ability to model a device allows templates to be used post-profiling to extract key information from many different target devices using the power consumption of very few encryptions. This allows an adversary to overcome protocols intended to prevent secret key recovery by restricting the number of available traces. In this thesis a detailed investigation of template attacks is conducted, along with how the selection of various attack parameters practically affect the efficiency of the secret key recovery, as well as examining the underlying assumption of profiling attacks in that the power consumption of one device can be used to extract secret keys from another. Trace only attacks, where the corresponding plaintext or ciphertext data is unavailable, are then investigated against both symmetric and asymmetric algorithms with the goal of key recovery from a single trace. This allows an adversary to bypass many of the currently proposed countermeasures, particularly in the asymmetric domain. An investigation into machine-learning methods for side-channel analysis as an alternative to template or stochastic methods is also conducted, with support vector machines, logistic regression and neural networks investigated from a side-channel viewpoint. Both binary and multi-class classification attack scenarios are examined in order to explore the relative strengths of each algorithm. Finally these machine-learning based alternatives are empirically compared with template attacks, with their respective merits examined with regards to attack efficiency

    Horizontal Clustering Side-Channel Attacks on Embedded ECC Implementations (Extended Version)

    Get PDF
    Side-channel attacks are a threat to cryptographic algorithms running on embedded devices. Public-key cryptosystems, including elliptic curve cryptography (ECC), are particularly vulnerable because their private keys are usually long-term. Well known countermeasures like regularity, projective coordinates and scalar randomization, among others, are used to harden implementations against common side-channel attacks like DPA. Horizontal clustering attacks can theoretically overcome these countermeasures by attacking individual side-channel traces. In practice horizontal attacks have been applied to overcome protected ECC implementations on FPGAs. However, it has not been known yet whether such attacks can be applied to protected implementations working on embedded devices, especially in a non-profiled setting. In this paper we mount non-profiled horizontal clustering attacks on two protected implementations of the Montgomery Ladder on Curve25519 available in the µNaCl library targeting electromagnetic (EM) emanations. The first implementation performs the conditional swap (cswap) operation through arithmetic of field elements (cswap-arith), while the second does so by swapping the pointers (cswap-pointer). They run on a 32-bit ARM Cortex-M4F core. Our best attack has success rates of 97.64% and 99.60% for cswap-arith and cswap-pointer, respectively. This means that at most 6 and 2 bits are incorrectly recovered, and therefore, a subsequent brute-force can fix them in reasonable time. Furthermore, our horizontal clustering framework used for the aforementioned attacks can be applied against other protected implementations

    Exploitation of Unintentional Information Leakage from Integrated Circuits

    Get PDF
    Unintentional electromagnetic emissions are used to recognize or verify the identity of a unique integrated circuit (IC) based on fabrication process-induced variations in a manner analogous to biometric human identification. The effectiveness of the technique is demonstrated through an extensive empirical study, with results presented indicating correct device identification success rates of greater than 99:5%, and average verification equal error rates (EERs) of less than 0:05% for 40 near-identical devices. The proposed approach is suitable for security applications involving commodity commercial ICs, with substantial cost and scalability advantages over existing approaches. A systematic leakage mapping methodology is also proposed to comprehensively assess the information leakage of arbitrary block cipher implementations, and to quantitatively bound an arbitrary implementation\u27s resistance to the general class of differential side channel analysis techniques. The framework is demonstrated using the well-known Hamming Weight and Hamming Distance leakage models, and approach\u27s effectiveness is demonstrated through the empirical assessment of two typical unprotected implementations of the Advanced Encryption Standard. The assessment results are empirically validated against correlation-based differential power and electromagnetic analysis attacks
    corecore