400 research outputs found

    CRYSTALS - Kyber: A CCA-secure Module-Lattice-Based KEM

    Get PDF
    Rapid advances in quantum computing, together with the announcement by the National Institute of Standards and Technology (NIST) to define new standards for digital-signature, encryption, and key-establishment protocols, have created significant interest in post-quantum cryptographic schemes. This paper introduces Kyber (part of CRYSTALS - Cryptographic Suite for Algebraic Lattices - a package submitted to NIST post-quantum standardization effort in November 2017), a portfolio of post-quantum cryptographic primitives built around a key-encapsulation mechanism (KEM), based on hardness assumptions over module lattices. Our KEM is most naturally seen as a successor to the NEWHOPE KEM (Usenix 2016). In particular, the key and ciphertext sizes of our new construction are about half the size, the KEM offers CCA instead of only passive security, the security is based on a more general (and flexible) lattice problem, and our optimized implementation results in essentially the same running time as the aforementioned scheme. We first introduce a CPA-secure public-key encryption scheme, apply a variant of the Fujisaki-Okamoto transform to create a CCA-secure KEM, and eventually construct, in a black-box manner, CCA-secure encryption, key exchange, and authenticated-key-exchange schemes. The security of our primitives is based on the hardness of Module-LWE in the classical and quantum random oracle models, and our concrete parameters conservatively target more than 128 bits of post-quantum security

    CRYSTALS - Kyber: A CCA-secure Module-Lattice-Based KEM

    Get PDF
    Rapid advances in quantum computing, together with the announcement by the National Institute of Standards and Technology (NIST) to define new standards for digitalsignature, encryption, and key-establishment protocols, have created significant interest in post-quantum cryptographic schemes. This paper introduces Kyber (part of CRYSTALS - Cryptographic Suite for Algebraic Lattices - a package submitted to NIST post-quantum standardization effort in November 2017), a portfolio of post-quantum cryptographic primitives built around a key-encapsulation mechanism (KEM), based on hardness assumptions over module lattices. Our KEM is most naturally seen as a successor to the NEWHOPE KEM (Usenix 2016). In particular, the key and ciphertext sizes of our new construction are about half the size, the KEM offers CCA instead of only passive security, the security is based on a more general (and flexible) lattice problem, and our optimized implementation results in essentially the same running time as the aforementioned scheme. We first introduce a CPA-secure public-key encryption scheme, apply a variant of the Fujisaki-Okamoto transform to create a CCA-secure KEM, and eventually construct, in a black-box manner, CCA-secure encryption, key exchange, and authenticated-key-exchange schemes. The security of our primitives is based on the hardness of Module-LWE in the classical and quantum random oracle models, and our concrete parameters conservatively target more than 128 bits of postquantum security

    Modular Design of KEM-Based Authenticated Key Exchange

    Get PDF
    A key encapsulation mechanism (KEM) is a basic building block for key exchange which must be combined with long-term keys in order to achieve authenticated key exchange (AKE). Although several KEM-based AKE protocols have been proposed, KEM-based modular building blocks are not available. We provide a KEM-based authenticator and a KEM-based protocol in the Authenticated Links model (AM), in the terminology of Canetti and Krawczyk (2001). Using these building blocks we achieve a set of generic AKE protocols. By instantiating these with post-quantum secure primitives we are able to propose several new post-quantum secure AKE protocols

    Towards Post-Quantum Security for Signal's X3DH Handshake

    Get PDF
    Modern key exchange protocols are usually based on the Diffie–Hellman (DH) primitive. The beauty of this primitive, among other things, is its potential reusage of key shares: DH shares can be either used a single time or in multiple runs. Since DH-based protocols are insecure against quantum adversaries, alternative solutions have to be found when moving to the post-quantum setting. However, most post-quantum candidates, including schemes based on lattices and even supersingular isogeny DH, are not known to be secure under key reuse. In particular, this means that they cannot be necessarily deployed as an immediate DH substitute in protocols. In this paper, we introduce the notion of a split key encapsulation mechanism (split KEM) to translate the desired key-reusability of a DH-based protocol to a KEM-based flow. We provide the relevant security notions of split KEMs and show how the formalism lends itself to lifting Signal’s X3DH handshake to the post-quantum KEM setting without additional message flows. Although the proposed framework conceptually solves the raised issues, instantiating it securely from post-quantum assumptions proved to be non-trivial. We give passively secure instantiations from (R)LWE, yet overcoming the above-mentioned insecurities under key reuse in the presence of active adversaries remains an open problem. Approaching one- sided key reuse, we provide a split KEM instantiation that allows such reuse based on the KEM introduced by Kiltz (PKC 2007), which may serve as a post-quantum blueprint if the underlying hardness assumption (gap hashed Diffie–Hellman) holds for the commutative group action of CSIDH (Asiacrypt 2018). The intention of this paper hence is to raise awareness of the challenges arising when moving to KEM-based key exchange protocols with key-reusability, and to propose split KEMs as a specific target for instantiation in future research

    Practical Quantum-Safe Stateful Hybrid Key Exchange Protocol

    Get PDF
    Shor\u27s quantum algorithm, running in quantum computers, can efficiently solve integer factorization problem and discrete logarithm problem in polynomial time. This poses an urgent and serious threat to long-term security with recent accelerated evolution of quantum computing. However, National Institute of Standards and Technology (NIST) plans to release its standard of post-quantum cryptography between 2022 and 2024. It is crucially important to propose an early solution, which is likely secure against quantum attacks and classical attacks, and likely to comply with the future NIST standard. A robust combiner combines a set of 2 or more cryptography primitives into a new primitive of the same type, and guarantees that if anyone of the ingredient primitive is secure, then the resulting primitive is secure. This work proposes the first construction of robust combiner for Key Encapsulation Mechanism (KEM), with optimal amortized performance. From our robust combiner of KEMs, we construct efficient stateful hybrid Key Exchange Protocol (KEP), which is more suitable for two parties who will communicate with each other frequently

    CRYSTALS -- Kyber: a CCA-secure module-lattice-based KEM

    Get PDF
    Rapid advances in quantum computing, together with the announcement by the National Institute of Standards and Technology (NIST) to define new standards for digital-signature, encryption, and key-establishment protocols, have created significant interest in post-quantum cryptographic schemes. This paper introduces Kyber (part of CRYSTALS -- Cryptographic Suite for Algebraic Lattices -- a package submitted to NIST post-quantum standardization effort in November 2017), a portfolio of post-quantum cryptographic primitives built around a key-encapsulation mechanism (KEM),based on hardness assumptions over module lattices. Our KEM is most naturally seen as a successor to the NewHope KEM (Usenix 2016). In particular, the key and ciphertext sizes of our new construction are about half the size, the KEM offers CCA instead of only passive security, the security is based on a more general (and flexible) lattice problem, and our optimized implementation results in essentially the same running time as the aforementioned scheme. We first introduce a CPA-secure public-key encryption scheme, apply a variant of the Fujisaki--Okamoto transform to create a CCA-secure KEM, and eventually construct, in a black-box manner, CCA-secure encryption, key exchange, and authenticated-key-exchange schemes. The security of our primitives is based on the hardness of Module-LWE in the classical and quantum random oracle models, and our concrete parameters conservatively target more than 128128 bits of post-quantum security

    A Note on Post-Quantum Authenticated Key Exchange from Supersingular Isogenies

    Get PDF
    In this work, we study several post-quantum authenticated key exchange protocols in the setting of supersingular isogenies. Leveraging the design of the well-studied schemes by Krawczyk (2003), Boyd et al. (2008), Fujioka et al. (2013), Krawczyk and Wee (2015), and others, we show how to use the Supersingular Isogeny Diffie-Hellman (SIDH) and Supersingular Isogeny Key Encapsulation (SIKE) protocols as basic building blocks to construct efficient and flexible authenticated key exchange schemes featuring different functionalities and levels of security. This note is also intended to be a ``gentle\u27\u27 introduction to supersingular isogeny based cryptography, and its most relevant constructions, for protocol designers and cryptographers
    • …
    corecore