855 research outputs found

    A review of laser scanning for geological and geotechnical applications in underground mining

    Full text link
    Laser scanning can provide timely assessments of mine sites despite adverse challenges in the operational environment. Although there are several published articles on laser scanning, there is a need to review them in the context of underground mining applications. To this end, a holistic review of laser scanning is presented including progress in 3D scanning systems, data capture/processing techniques and primary applications in underground mines. Laser scanning technology has advanced significantly in terms of mobility and mapping, but there are constraints in coherent and consistent data collection at certain mines due to feature deficiency, dynamics, and environmental influences such as dust and water. Studies suggest that laser scanning has matured over the years for change detection, clearance measurements and structure mapping applications. However, there is scope for improvements in lithology identification, surface parameter measurements, logistic tracking and autonomous navigation. Laser scanning has the potential to provide real-time solutions but the lack of infrastructure in underground mines for data transfer, geodetic networking and processing capacity remain limiting factors. Nevertheless, laser scanners are becoming an integral part of mine automation thanks to their affordability, accuracy and mobility, which should support their widespread usage in years to come

    Advanced transport operating system software upgrade: Flight management/flight controls software description

    Get PDF
    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU)

    Novel modulated antennas and probes for millimeter wave imaging applications

    Get PDF
    Microwave and millimeter wave (300 MHz - 300 GHz) imaging techniques have shown great potential for a wide range of industrial and medical applications. These techniques are fundamentally based on measuring relative and coherent electromagnetic fields distributions, e.g., electric fields, around the object to be imaged. Various imaging systems can be devised for measuring relative electric field distributions; each with it own advantages and limitations. This dissertation is focused on addressing critical challenges related to the practical implementation of various microwave and millimeter wave imaging systems. Specifically, this research is meant to achieve three main objectives related to designing efficient modulated imaging methods/array elements, reducing the sensitivity to standoff distance variations in near-field imaging, and designing a simple and accurate vector network analyzer (VNA) for in-situ imaging applications. The concept of modulating millimeter wave antenna and scatterer structures, directly to increase the overall system sensitivity and reduce the image acquisition time, is central to the development presented herein. To improve upon the conventional modulated scatterer technique (MST) based on dipole scatterers; a new multiple loaded scatterer (MLS) method and novel loaded elliptical slot are introduced and analyzed. A unique near-field differential probe based on dual-loaded modulated single waveguide aperture is developed to compensate for and reduce the effect of standoff distance variations in near-field imaging. Finally, a novel vector network analyzer (VNA) design is introduced to meet the rising need for in-situ vector measuring devices. To realize a robust handheld millimeter wave VNA, a custom-designed waveguide phase shifter based on sub-resonant loaded slots is introduced. The proposed MLS method, modulated elliptical slot, dual-loaded modulated aperture probe, and VNA are thoroughly investigated and their efficacy for microwave and millimeter wave imaging is demonstrated --Abstract, page iii

    From point cloud to textured model the Zamani laser scanning pipeline in heritage documentation

    Get PDF
    The paper describes the stages of the laser scanning pipeline from data acquisition to the final 3D computer model based on experiences gained during the ongoing creation of data for the African Cultural Heritage Sites and Landscapes database. The various processes are briefly discussed and challenges are highlighted which need to be addressed to develop the full potential of laser scanning. Experiences with fieldwork, scan registration, hole-filling, data cleaning, modelling and texturing are reported. The potential strengths and weaknesses of the emerging tool of “Structure from Motion” are briefly explored for their potential use in combination with laser scanning

    Laserbasert oppmÄling av bygningsobjekter og bygninger

    Get PDF
    Building information models (BIMs) for facility management is gaining interest. Different technologies for collecting the raw material to extract such model are in rapid development. The most common technologies are based on images, structure light, laser or a combination of these. The new technologies have the potential to provide efficient data collection, but not necessarily at the same accuracy compared to the traditional methods. This thesis has explored how to rapidly establish a BIM for an existing building. This was done by investigating two different aspects related to this task. The first aspect was related to product specification and provide a framework for ordering and controlling a laser-based survey of a building. The second aspect explores how a laser-based system could be used to rapidly survey an existing building. Through the thesis and the first aspect, it is shown that the Norwegian survey community is lacking an unambiguous product specification for building surveys performed for BIM extraction and that the survey seldomly is adequately controlled. Based on these findings a product specification has been developed in cooperation with building owners. This cooperation made it possible to test the product specification in real projects. The product specification was developed through three different versions. The zero version was presented at the World Building Congress in 2016 and was tested in a renovation project at the Norwegian University of Life Sciences. The evaluation of the project led to the first version that was used in a framework competition arranged by Ullensaker municipality in the south-east of Norway. The result led to the second and final version of the product specification. The proposed product specification follows a simplified transaction pattern between the customer and the producer. The focus has been on the customer's request for a building survey suitable for BIM extraction and the customer's acceptance actions when the building survey is delivered. The acceptance actions are based on well–known standards created by the Norwegian Mapping Authority. The customer request is based on the acceptance actions. This ensures that every requirements can be verified in the accepting stage. The main purposes of the product specification were to ensure reliable results and to minimize the difference between the customer request and the producer’s delivery. Additionally, an unambiguous product specification can ensure a fair competition situation between the producers and give the producers the possibility to select the best-suited technology. The second aspect is related to how a building can be efficiently surveyed and explores how this could be done with a laser-based system. A human carried survey system was developed through three stages. The first and second stages focused on circle shaped objects and were realized in cooperation with the Faculty of Environmental Sciences and Natural Resource Management at the Norwegian University of Life Sciences. The system surveyed tree diameter at breast height within sample plots in size 250-500 m2. The system was able to detect 87.5% of the trees with a mean difference of 0.1 cm, and a root mean square of 2.2 cm. The novel aspect is related to how the trees are segmented and how the diameters are estimated without losing precision due to degraded pose solution. The result can be used in forestry inventory projects together with airborne laser surveys. The third stage was made for indoor measurements. The main focus was on how to aid the navigation solution in the absence of Global Navigation Satellite System signals. The method divides the laser point measurements into small time frames. For each time frame, the laser points were automatically classified into column, walls, floor, and ceiling. This information was used to support a scan matching method called semantic-assisted normal distributions transform. The result from the scan matching was used to create a trajectory of the walking path followed during data capture. This result was fed back into the inertial navigation processing to aid the solution when the system was located inside the building. This gives the inertial navigation process the ability to reject scan matching failures. The novel method was able to improve the survey accuracy from a maximum deviation of 12.6 m to 1.1 m. The third stage had two different Inertial Measurement Units (IMU) installed. The most accurate system was a tactical graded IMU, and the lowest accurate system was an automotive graded IMU. With the proposed method, the automotive graded system was able to perform at a higher level than a standalone tactical graded solution.Interessen for Ă„ bruke BygningsInformasjonsModeller (BIMer) i forvaltning, drift og vedlikehold av bygninger er Ăžkende. Ulike teknologier for innsamling av data for Ă„ etablere slike modeller er i rask utvikling. De vanligste teknologiene er basert pĂ„ bilder, strukturert lys, laser eller en kombinasjon av disse. Ny teknologi utfĂžrer mĂ„lingene veldig effektivt, men ikke med samme nĂžyaktighet som tradisjoneller metoder. Denne studien har undersĂžkt hvordan en raskt kan etablere en BIM i et eksisterende bygg. Dette ble gjort ved Ă„ utforske to ulike aspekter av problemstillingen. Det fĂžrste aspektet ser pĂ„ produktspesifikasjon og foreslĂ„r et rammeverk til bruk ved bestilling og kontroll av laser-basert innmĂ„ling av eksisterende bygning. Det andre aspektet utforsker hvordan et laser-basert system raskt kan mĂ„le opp eksisterende bygg.The Norwegian Building Authority, Cautus Geo AS and Geomatikk survey have kindly founded parts of the studies
    • 

    corecore