173 research outputs found

    A Survey on Two New Secure and Efficient Data Transmission Protocols SET-IBS and SET-IBOOS for WSN

    Get PDF
    Data transmission in a secure way is a critical issue for wireless sensor networks (WSNs). Clustering is an effective and practical way to enhance the system performance of WSNs. The system proposes two new Secure and Efficient Data Transmission Protocols. This technique is useful for Cluster Based Wireless Sensor Networks. SET-IBS and SET-IBOOS are proposed protocols which uses Identity Based Digital Signature (IBS) and Identity Based Online/Offline Digital Signatures respectively. In general, for any secure data transmission protocols key exchange is a big overhead. This is removed in the proposed system by introducing Base Station. SET-IBOOS Scheme reduces the computational overhead. DOI: 10.17762/ijritcc2321-8169.15036

    Smart Cameras with onboard Signcryption for Securing IoT Applications

    Get PDF
    Cameras are expected to become key sensor devices for various internet of things (IoT) applications. Since cameras often capture highly sensitive information, security is a major concern. Our approach towards data security for smart cameras is rooted on protecting the captured images by signcryption based on elliptic curve cryptography (ECC). Signcryption achieves resource-efficiency by performing data signing and encryption in a single step. By running the signcryption on the sensing unit, we can relax some security assumptions for the camera host unit which typically runs a complex software stack. We introduce our system architecture motivated by a typical case study for camera-based IoT applications, evaluate security properties and present performance results of an ARM-based implementatio

    Novel lightweight signcryption-based key distribution mechanisms for MIKEY

    Get PDF
    Part 1: Authentication and Key ManagementInternational audienceMultimedia Internet KEYing (MIKEY) is a standard key management protocol, used to set up common secrets between any two parties for multiple scenarios of communications. As MIKEY becomes widely deployed, it becomes worthwhile to not confine its applications to real-time or other specific applications, but also to extend the standard to other scenarios as well. For instance, MIKEY can be used to secure key establishment in the Internet of Things. In this particular context, Elliptic Curve Cryptography-based (ECC) algorithms seem to be good candidate to be employed by MIKEY, since they can support equivalent security level when compared with other recommended cryptographic algorithms like RSA, and at the same time requiring smaller key sizes and offering better performance. In this work, we propose novel lightweight ECC-based key distribution extensions for MIKEY that are built upon a previously proposed certificateless signcryption scheme. To our knowledge, these extensions are the first ECC-based MIKEY extensions that employ signcryption schemes. Our proposed extensions benefit from the lightness of the signcryption scheme, while being discharged from the burden of the public key infrastructure (PKI) thanks to its certificateless feature. To demonstrate their performance, we implemented our proposed extensions in the Openmote sensor platform and conducted a thorough performance assessment by measuring the energy consumption and execution time of each operation in the key establishment procedure. The experimental results prove that our new MIKEY extensions are perfectly suited for resource-constrained device

    Security of IoT in 5G Cellular Networks: A Review of Current Status, Challenges and Future Directions

    Get PDF
    The Internet of Things (IoT) refers to a global network that integrates real life physical objects with the virtual world through the Internet for making intelligent decisions. In a pervasive computing environment, thousands of smart devices, that are constrained in storage, battery backup and computational capability, are connected with each other. In such an environment, cellular networks that are evolving from 4G to 5G, are set to play a crucial role. Distinctive features like high bandwidth, wider coverage, easy connectivity, in-built billing mechanism, interface for M2M communication, etc., makes 5G cellular network a perfect candidate to be adopted as a backbone network for the future IoT. However, due to resource constrained nature of the IoT devices, researchers have anticipated several security and privacy issues in IoT deployments over 5G cellular network. Off late, several schemes and protocols have been proposed to handle these issues. This paper performs a comprehensive review of such schemes and protocols proposed in recent times. Different open security issues, challenges and future research direction are also summarized in this review paper

    Lightweight certificateless and provably-secure signcryptosystem for the internet of things

    Get PDF
    International audienceIn this paper, we propose an elliptic curve-based signcryption scheme derived from the standardized signature KCDSA (Korean Certificate-based Digital Signature Algorithm) in the context of the Internet of Things. Our solution has several advantages. First, the scheme is provably secure in the random oracle model. Second, it provides the following security properties: outsider/insider confidentiality and unforgeability; non-repudiation and public verifiability, while being efficient in terms of communication and computation costs. Third, the scheme offers the certificateless feature, so certificates are not needed to verify the user's public keys. For illustration, we conducted experimental evaluation based on a sensor Wismote platform and compared the performance of the proposed scheme to concurrent scheme

    Lightweight identity based online/offline signature scheme for wireless sensor networks

    Get PDF
    Data security is one of the issues during data exchange between two sensor nodes in wireless sensor networks (WSN). While information flows across naturally exposed communication channels, cybercriminals may access sensitive information. Multiple traditional reliable encryption methods like RSA encryption-decryption and Diffie–Hellman key exchange face a crisis of computational resources due to limited storage, low computational ability, and insufficient power in lightweight WSNs. The complexity of these security mechanisms reduces the network lifespan, and an online/offline strategy is one way to overcome this problem. This study proposed an improved identity-based online/offline signature scheme using Elliptic Curve Cryptography (ECC) encryption. The lightweight calculations were conducted during the online phase, and in the offline phase, the encryption, point multiplication, and other heavy measures were pre-processed using powerful devices. The proposed scheme uniquely combined the Inverse Collusion Attack Algorithm (CAA) with lightweight ECC to generate secure identitybased signatures. The suggested scheme was analyzed for security and success probability under Random Oracle Model (ROM). The analysis concluded that the generated signatures were immune to even the worst Chosen Message Attack. The most important, resource-effective, and extensively used on-demand function was the verification of the signatures. The low-cost verification algorithm of the scheme saved a significant number of valued resources and increased the overall network’s lifespan. The results for encryption/decryption time, computation difficulty, and key generation time for various data sizes showed the proposed solution was ideal for lightweight devices as it accelerated data transmission speed and consumed the least resources. The hybrid method obtained an average of 66.77% less time consumption and up to 12% lower computational cost than previous schemes like the dynamic IDB-ECC two-factor authentication key exchange protocol, lightweight IBE scheme (IDB-Lite), and Korean certification-based signature standard using the ECC. The proposed scheme had a smaller key size and signature size of 160 bits. Overall, the energy consumption was also reduced to 0.53 mJ for 1312 bits of offline storage. The hybrid framework of identity-based signatures, online/offline phases, ECC, CAA, and low-cost algorithms enhances overall performance by having less complexity, time, and memory consumption. Thus, the proposed hybrid scheme is ideally suited for a lightweight WSN
    • …
    corecore