12 research outputs found

    Racer: A Core Inference Engine for the Semantic Web

    Get PDF
    In this paper we describe Racer, which can be considered as a core inference engine for the semantic web. The Racer inference server o#ers two APIs that are already used by at least three di#erent network clients, i.e., the ontology editor OilEd, the visualization tool RICE, and the ontology development environment Protege 2. The Racer server supports the standard DIG protocol via HTTP and a TCP based protocol with extensive query facilities. Racer currently supports the web ontology languages DAML+OIL, RDF, and OWL

    An Hybrid, Qos-Aware Discovery of Semantic Web Services Using Constraint Programming

    Get PDF
    Most Semantic Web Services discovery approaches are not well suited when using complex relational, arithmetic and logical expressions, because they are usually based on Description Logics. Moreover, these kind of expressions usually appear when discovery is performed including Quality-of-Service conditions. In this work, we present an hybrid discovery process for Semantic Web Services that takes care of QoS conditions. Our approach splits discovery into stages, using different engines in each one, depending on its search nature. This architecture is extensible and loosely coupled, allowing the addition of discovery engines at will. In order to perform QoS-aware discovery, we propose a stage that uses Constraint Programming, that allows to use complex QoS conditions within discovery queries. Furthermore, it is possible to obtain the optimal offer that fulfills a given demand using this approach.Comisión Interministerial de Ciencia y Tecnología TIN2006-0047

    Semantic Web Services Provisioning

    Get PDF
    Semantic Web Services constitute an important research area, where vari ous underlying frameworks, such as WSMO and OWL-S, define Semantic Web ontologies to describe Web services, so they can be automatically discovered, composed, and invoked. Service discovery has been traditionally interpreted as a functional filter in current Semantic Web Services frameworks, frequently performed by Description Logics reasoners. However, semantic provisioning has to be performed taking Quality-of-Service (QOS) into account, defining user preferences that enable QOS-aware Semantic Web Service selection. Nowadays, the research focus is actually on QOS-aware processes, so cur rent proposals are developing the field by providing QOS support to semantic provisioning, especially in selection processes. These processes lead to opti mization problems, where the best service among a set of services has to be selected, so Description Logics cannot be used in this context. Furthermore, user preferences has to be semantically defined so they can be used within selection processes. There are several proposals that extend Semantic Web Services frameworks allowing QOS-aware semantic provisioning. However, proposed selection techniques are very coupled with their proposed extensions, most of them being implemented ad hoc. Thus, there is a semantic gap between functional descriptions (usually using WSMO or OWL-S) and user preferences, which are specific for each proposal, using different ontologies or even non-semantic de scriptions, and depending on its corresponding ad hoc selection technique. In this report, we give an overview of most important Semantic Web Ser vices frameworks, showing a comparison between them. Then, a thorough analysis of state-of-the art proposals on QOS-aware semantic provisioning and user preferences descriptions is presented, discussing about their applicabil ity, advantages, and defects. Results from this analysis motivate our research work, which has been already materialized in two early contributions.Los servicios web semánticos constituyen un importante campo de inves tigación, en el cual distintos frameworks, como por ejemplo WSMO y OWL-S, definen ontologías de la web semántica para describir servicios web, de for ma que estos puedan ser descubiertos, compuestos e invocados de manera automática. El descubrimiento de servicios ha sido interpretado tradicional mente como un filtro funcional en los frameworks actuales de servicios web semánticos, usando para ello razonadores de lógica descriptiva. Sin embargo, las tareas de aprovisionamiento semántico deberían tener en cuenta la calidad del servicio, definiendo para ello preferencias de usuario de manera que sea posible realizar una selección de servicios web semánticos sensible a la cali dad. Actualmente, el foco de la investigación está en procesos sensibles a la ca lidad, por lo que las propuestas actuales están trabajando en este campo intro duciendo el soporte adecuado a la calidad del servicio dentro del aprovisio namiento semántico, y principalmente en las tareas de selección. Estas tareas desembocan en problemas de optimización, donde el mejor servicio de entre un concjunto debe ser seleccionado, por lo que las lógicas descriptivas no pue den ser usadas en este contexto. Además, las preferencias de usuario deben ser definidas semánticamente, de forma que puedan ser usadas en las tareas de selección. Existen bastantes propuestas que extienden los frameworks de servicios web semánticos para habilitar el aprovisionamiento sensible a la calidad. Sin embargo, las técnicas de selección propuestas están altamente acopladas con dichas extensiones, donde la mayoría de ellas implementan algoritmos ad hoc. Por tanto, existe un salto semántico entre las descripciones funcionales (nor malmente usando WSMO o OWL-S) y las preferencias de usuario, las cuales son definidas específicamente por cada propuesta, usando ontologías distin tas o incluso descripciones no semánticas que dependen de la correspondiente técnica de selección ad hoc

    A formal modeling approach to ontology engineering

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A Logic-Based Framework for Web Access Control Policies

    Get PDF
    With the widespread use of web services, there is a need for adequate security and privacy support to protect the sensitive information these services could provide. As a result, there has been a great interest in access control policy languages which accommodate large, open, distributed and heterogeneous environments like the Web. XACML has emerged as a popular access control language, but because of its rich expressiveness and informal semantics, it suffers from a) a lack of understanding of its formal properties, and b) a lack of automated, compile-time services that can detect errors in expressive, distributed and heterogeneous policies. In this dissertation, I present a logic-based framework for XACML that addresses the above issues. One component of the framework is a Datalog-based mapping for XACML v3.0 that provides a theoretical foundation for the language, namely: a concise logic-based semantics and complexity results for full XACML and various fragments. Additionally, my mapping discovers close relationships between XACML and other logic based languages such as the Flexible Authorization Framework. The second component of this framework provides a practical foundation for static analysis of expressive XACML policies. The analysis services detect semantic errors or differences between policies before they are deployed. To provide these services, I present a mapping from XACML to the Web Ontology Language (OWL), which is the standardized language for representing the semantics of information on the Web. In particular, I focus on the OWL-DL sub-language, which is a logic-based fragment of OWL. Finally, to demonstrate the practicality of using OWL-DL reasoners as policy analyzers, I have implemented an OWL-based XACML analyzer and performed extensive empirical evaluation using both real world and synthetic policy sets

    Reasoning about complex agent knowledge - Ontologies, Uncertainty, rules and beyond

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Reasoning Algebraically with Description Logics

    Get PDF
    Semantic Web applications based on the Web Ontology Language (OWL) often require the use of numbers in class descriptions for expressing cardinality restrictions on properties or even classes. Some of these cardinalities are specified explicitly, but quite a few are entailed and need to be discovered by reasoning procedures. Due to the Description Logic (DL) foundation of OWL, those reasoning services are offered by DL reasoners. Existing DL reasoners employ reasoning procedures that are arithmetically uninformed and substitute arithmetic reasoning by "don't know" non-determinism in order to cover all possible cases. This lack of information about arithmetic problems dramatically degrades the performance of DL reasoners in many cases, especially with ontologies relying on the use of Nominals and Qualied Cardinality Restrictions. The contribution of this thesis is twofold: on the theoretical level, it presents algebra�ic reasoning with DL (ReAl DL) using a sound, complete, and terminating reasoning procedure for the DL SHOQ. ReAl DL combines tableau reasoning procedures with algebraic methods, namely Integer Programming, to ensure arithmetically better informed reasoning. SHOQ extends the standard DL ALC with transitive roles, role hierarchies, qualified cardinality restrictions (QCRs), and nominals, and forms an expressive subset of OWL. Although the proposed algebraic tableau is double exponential in the worst case, it deals with cardinalities with an additional level of information and properties that make the calculus amenable and well suited for optimizations. In order for ReAl DL to have a practical merit, suited optimizations are proposed towards achieving an efficient reasoning approach that addresses the sources of complexity related to nominals and QCRs. On the practical level, a running prototype reasoner (HARD) is implemented based on the proposed calculus and optimizations. HARD is used to evaluate the practical merit of ReAl DL, as well as the effectiveness of the proposed optimizations. Experimental results based on real world and synthetic ontologies show that ReAl DL outperforms existing reasoning approaches in handling the interactions between nominals and QCRs. ReAl DL also comes with some interesting features such as the ability to handle ontologies with cyclic descriptions without adopting special blocking strategies. ReAl DL can form a basis to provide more efficient reasoning support for ontologies using nominals or QCRs
    corecore