69 research outputs found

    Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery

    Full text link
    PCA is one of the most widely used dimension reduction techniques. A related easier problem is "subspace learning" or "subspace estimation". Given relatively clean data, both are easily solved via singular value decomposition (SVD). The problem of subspace learning or PCA in the presence of outliers is called robust subspace learning or robust PCA (RPCA). For long data sequences, if one tries to use a single lower dimensional subspace to represent the data, the required subspace dimension may end up being quite large. For such data, a better model is to assume that it lies in a low-dimensional subspace that can change over time, albeit gradually. The problem of tracking such data (and the subspaces) while being robust to outliers is called robust subspace tracking (RST). This article provides a magazine-style overview of the entire field of robust subspace learning and tracking. In particular solutions for three problems are discussed in detail: RPCA via sparse+low-rank matrix decomposition (S+LR), RST via S+LR, and "robust subspace recovery (RSR)". RSR assumes that an entire data vector is either an outlier or an inlier. The S+LR formulation instead assumes that outliers occur on only a few data vector indices and hence are well modeled as sparse corruptions.Comment: To appear, IEEE Signal Processing Magazine, July 201

    Robust Principal Component Analysis?

    Full text link
    This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the L1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces

    Robust Rotation Synchronization via Low-rank and Sparse Matrix Decomposition

    Get PDF
    This paper deals with the rotation synchronization problem, which arises in global registration of 3D point-sets and in structure from motion. The problem is formulated in an unprecedented way as a "low-rank and sparse" matrix decomposition that handles both outliers and missing data. A minimization strategy, dubbed R-GoDec, is also proposed and evaluated experimentally against state-of-the-art algorithms on simulated and real data. The results show that R-GoDec is the fastest among the robust algorithms.Comment: The material contained in this paper is part of a manuscript submitted to CVI

    Iterative Reconstrained Low-rank Representation via Weighted Nonconvex Regularizer

    Get PDF
    OAPA Benefiting from the joint consideration of geometric structures and low-rank constraint, graph low-rank representation (GLRR) method has led to the state-of-the-art results in many applications. However, it faces the limitations that the structure of errors should be known a prior, the isolated construction of graph Laplacian matrix, and the over shrinkage of the leading rank components. To improve GLRR in these regards, this paper proposes a new LRR model, namely iterative reconstrained LRR via weighted nonconvex regularization (IRWNR), using three distinguished properties on the concerned representation matrix. The first characterizes various distributions of the errors into an adaptively learned weight factor for more flexibility of noise suppression. The second generates an accurate graph matrix from weighted observations for less afflicted by noisy features. The third employs a parameterized Rational function to reveal the importance of different rank components for better approximation to the intrinsic subspace structure. Following a deep exploration of automatic thresholding, parallel update, and partial SVD operation, we derive a computationally efficient low-rank representation algorithm using an iterative reconstrained framework and accelerated proximal gradient method. Comprehensive experiments are conducted on synthetic data, image clustering, and background subtraction to achieve several quantitative benchmarks as clustering accuracy, normalized mutual information, and execution time. Results demonstrate the robustness and efficiency of IRWNR compared with other state-of-the-art models
    • …
    corecore