2,492 research outputs found

    Practical Hash Functions for Similarity Estimation and Dimensionality Reduction

    Full text link
    Hashing is a basic tool for dimensionality reduction employed in several aspects of machine learning. However, the perfomance analysis is often carried out under the abstract assumption that a truly random unit cost hash function is used, without concern for which concrete hash function is employed. The concrete hash function may work fine on sufficiently random input. The question is if it can be trusted in the real world when faced with more structured input. In this paper we focus on two prominent applications of hashing, namely similarity estimation with the one permutation hashing (OPH) scheme of Li et al. [NIPS'12] and feature hashing (FH) of Weinberger et al. [ICML'09], both of which have found numerous applications, i.e. in approximate near-neighbour search with LSH and large-scale classification with SVM. We consider mixed tabulation hashing of Dahlgaard et al.[FOCS'15] which was proved to perform like a truly random hash function in many applications, including OPH. Here we first show improved concentration bounds for FH with truly random hashing and then argue that mixed tabulation performs similar for sparse input. Our main contribution, however, is an experimental comparison of different hashing schemes when used inside FH, OPH, and LSH. We find that mixed tabulation hashing is almost as fast as the multiply-mod-prime scheme ax+b mod p. Mutiply-mod-prime is guaranteed to work well on sufficiently random data, but we demonstrate that in the above applications, it can lead to bias and poor concentration on both real-world and synthetic data. We also compare with the popular MurmurHash3, which has no proven guarantees. Mixed tabulation and MurmurHash3 both perform similar to truly random hashing in our experiments. However, mixed tabulation is 40% faster than MurmurHash3, and it has the proven guarantee of good performance on all possible input.Comment: Preliminary version of this paper will appear at NIPS 201

    FLASH: Randomized Algorithms Accelerated over CPU-GPU for Ultra-High Dimensional Similarity Search

    Full text link
    We present FLASH (\textbf{F}ast \textbf{L}SH \textbf{A}lgorithm for \textbf{S}imilarity search accelerated with \textbf{H}PC), a similarity search system for ultra-high dimensional datasets on a single machine, that does not require similarity computations and is tailored for high-performance computing platforms. By leveraging a LSH style randomized indexing procedure and combining it with several principled techniques, such as reservoir sampling, recent advances in one-pass minwise hashing, and count based estimations, we reduce the computational and parallelization costs of similarity search, while retaining sound theoretical guarantees. We evaluate FLASH on several real, high-dimensional datasets from different domains, including text, malicious URL, click-through prediction, social networks, etc. Our experiments shed new light on the difficulties associated with datasets having several million dimensions. Current state-of-the-art implementations either fail on the presented scale or are orders of magnitude slower than FLASH. FLASH is capable of computing an approximate k-NN graph, from scratch, over the full webspam dataset (1.3 billion nonzeros) in less than 10 seconds. Computing a full k-NN graph in less than 10 seconds on the webspam dataset, using brute-force (n2Dn^2D), will require at least 20 teraflops. We provide CPU and GPU implementations of FLASH for replicability of our results

    Practical and Optimal LSH for Angular Distance

    Get PDF
    We show the existence of a Locality-Sensitive Hashing (LSH) family for the angular distance that yields an approximate Near Neighbor Search algorithm with the asymptotically optimal running time exponent. Unlike earlier algorithms with this property (e.g., Spherical LSH [Andoni, Indyk, Nguyen, Razenshteyn 2014], [Andoni, Razenshteyn 2015]), our algorithm is also practical, improving upon the well-studied hyperplane LSH [Charikar, 2002] in practice. We also introduce a multiprobe version of this algorithm, and conduct experimental evaluation on real and synthetic data sets. We complement the above positive results with a fine-grained lower bound for the quality of any LSH family for angular distance. Our lower bound implies that the above LSH family exhibits a trade-off between evaluation time and quality that is close to optimal for a natural class of LSH functions.Comment: 22 pages, an extended abstract is to appear in the proceedings of the 29th Annual Conference on Neural Information Processing Systems (NIPS 2015
    • …
    corecore