5,083 research outputs found

    Smart Home and Artificial Intelligence as Environment for the Implementation of New Technologies

    Get PDF
    The technologies of a smart home and artificial intelligence (AI) are now inextricably linked. The perception and consideration of these technologies as a single system will make it possible to significantly simplify the approach to their study, design and implementation. The introduction of AI in managing the infrastructure of a smart home is a process of irreversible close future at the level with personal assistants and autopilots. It is extremely important to standardize, create and follow the typical models of information gathering and device management in a smart home, which should lead in the future to create a data analysis model and decision making through the software implementation of a specialized AI. AI techniques such as multi-agent systems, neural networks, fuzzy logic will form the basis for the functioning of a smart home in the future. The problems of diversity of data and models and the absence of centralized popular team decisions in this area significantly slow down further development. A big problem is a low percentage of open source data and code in the smart home and the AI when the research results are mostly unpublished and difficult to reproduce and implement independently. The proposed ways of finding solutions to models and standards can significantly accelerate the development of specialized AIs to manage a smart home and create an environment for the emergence of native innovative solutions based on analysis of data from sensors collected by monitoring systems of smart home. Particular attention should be paid to the search for resource savings and the profit from surpluses that will push for the development of these technologies and the transition from a level of prospect to technology exchange and the acquisition of benefits.The technologies of a smart home and artificial intelligence (AI) are now inextricably linked. The perception and consideration of these technologies as a single system will make it possible to significantly simplify the approach to their study, design and implementation. The introduction of AI in managing the infrastructure of a smart home is a process of irreversible close future at the level with personal assistants and autopilots. It is extremely important to standardize, create and follow the typical models of information gathering and device management in a smart home, which should lead in the future to create a data analysis model and decision making through the software implementation of a specialized AI. AI techniques such as multi-agent systems, neural networks, fuzzy logic will form the basis for the functioning of a smart home in the future. The problems of diversity of data and models and the absence of centralized popular team decisions in this area significantly slow down further development. A big problem is a low percentage of open source data and code in the smart home and the AI when the research results are mostly unpublished and difficult to reproduce and implement independently. The proposed ways of finding solutions to models and standards can significantly accelerate the development of specialized AIs to manage a smart home and create an environment for the emergence of native innovative solutions based on analysis of data from sensors collected by monitoring systems of smart home. Particular attention should be paid to the search for resource savings and the profit from surpluses that will push for the development of these technologies and the transition from a level of prospect to technology exchange and the acquisition of benefits

    Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines

    Get PDF
    Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines, a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. Synaptic sampling machines perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate & fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based synaptic sampling machines outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    NASA JSC neural network survey results

    Get PDF
    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    • …
    corecore