7,040 research outputs found

    Realizable Hamiltonians for Universal Adiabatic Quantum Computers

    Get PDF
    It has been established that local lattice spin Hamiltonians can be used for universal adiabatic quantum computation. However, the 2-local model Hamiltonians used in these proofs are general and hence do not limit the types of interactions required between spins. To address this concern, the present paper provides two simple model Hamiltonians that are of practical interest to experimentalists working towards the realization of a universal adiabatic quantum computer. The model Hamiltonians presented are the simplest known QMA-complete 2-local Hamiltonians. The 2-local Ising model with 1-local transverse field which has been realized using an array of technologies, is perhaps the simplest quantum spin model but is unlikely to be universal for adiabatic quantum computation. We demonstrate that this model can be rendered universal and QMA-complete by adding a tunable 2-local transverse XX coupling. We also show the universality and QMA-completeness of spin models with only 1-local Z and X fields and 2-local ZX interactions.Comment: Paper revised and extended to improve clarity; to appear in Physical Review

    Mixed-state quantum transport in correlated spin networks

    Full text link
    Quantum spin networks can be used to transport information between separated registers in a quantum information processor. To find a practical implementation, the strict requirements of ideal models for perfect state transfer need to be relaxed, allowing for complex coupling topologies and general initial states. Here we analyze transport in complex quantum spin networks in the maximally mixed state and derive explicit conditions that should be satisfied by propagators for perfect state transport. Using a description of the transport process as a quantum walk over the network, we show that it is necessary to phase correlate the transport processes occurring along all the possible paths in the network. We provide a Hamiltonian that achieves this correlation, and use it in a constructive method to derive engineered couplings for perfect transport in complicated network topologies

    Parametrization of semi-dynamical quantum reflection algebra

    Full text link
    We construct sets of structure matrices for the semi-dynamical reflection algebra, solving the Yang-Baxter type consistency equations extended by the action of an automorphism of the auxiliary space. These solutions are parametrized by dynamical conjugation matrices, Drinfel'd twist representations and quantum non-dynamical RR-matrices. They yield factorized forms for the monodromy matrices.Comment: LaTeX, 24 pages. Misprints corrected, comments added in Conclusion on construction of Hamiltonian

    Algebraic treatments of the problems of the spin-1/2 particles in the one and two-dimensional geometry: a systematic study

    Full text link
    We consider solutions of the 2x2 matrix Hamiltonians of the physical systems within the context of the su(2) and su(1,1) Lie algebra. Our technique is relatively simple when compared with the others and treats those Hamiltonians which can be treated in a unified framework of the % Sp(4,R) algebra. The systematic study presented here reproduces a number of earlier results in a natural way as well as leads to a novel findings. Possible generalizations of the method are also suggested.Comment: Annals of Physics (2005) to be publishe

    Three-Hilbert-Space Formulation of Quantum Mechanics

    Get PDF
    In paper [Znojil M., Phys. Rev. D 78 (2008), 085003, 5 pages, arXiv:0809.2874] the two-Hilbert-space (2HS, a.k.a. cryptohermitian) formulation of Quantum Mechanics has been revisited. In the present continuation of this study (with the spaces in question denoted as H(auxiliary){\cal H}^{\rm (auxiliary)} and H(standard){\cal H}^{\rm (standard)}) we spot a weak point of the 2HS formalism which lies in the double role played by H(auxiliary){\cal H}^{\rm (auxiliary)}. As long as this confluence of roles may (and did!) lead to confusion in the literature, we propose an amended, three-Hilbert-space (3HS) reformulation of the same theory. As a byproduct of our analysis of the formalism we offer an amendment of the Dirac's bra-ket notation and we also show how its use clarifies the concept of covariance in time-dependent cases. Via an elementary example we finally explain why in certain quantum systems the generator H(gen)H_{\rm (gen)} of the time-evolution of the wave functions may differ from their Hamiltonian HH
    corecore