28 research outputs found

    Quantitative diagnostics of stratospheric mixing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 1998.Includes bibliographical references (p. 124-134).by Adam Harrison Sobel.Ph.D

    Atmospheric Ozone 1985. Assessment of Our Understanding of the Processes Controlling Its Present Distribution and Change, Volume 1

    Get PDF
    Topics addressed include: stratospheric chemistry; tropospheric trace gas (sources, distributions, and trends); tropospheric chemistry (processes, controlling the ozone and hydroxyl radicals); stratosphere-troposphere exchange; dynamic processes; and radiative processes (solar and terrestrial)

    Stratospheric residual circulation as deduced from satellite data

    Get PDF

    100 Years of Earth System Model Development

    Get PDF
    This is the final version. Available from American Meteorological Society via the DOI in this recordToday’s global Earth System Models began as simple regional models of tropospheric weather systems. Over the past century, the physical realism of the models has steadily increased, while the scope of the models has broadened to include the global troposphere and stratosphere, the ocean, the vegetated land surface, and terrestrial ice sheets. This chapter gives an approximately chronological account of the many and profound conceptual and technological advances that made today’s models possible. For brevity, we omit any discussion of the roles of chemistry and biogeochemistry, and terrestrial ice sheets

    Global Analysis, Interpretation and Modelling: An Earth Systems Modelling Program

    Get PDF
    The Goal of the GAIM is: To advance the study of the coupled dynamics of the Earth system using as tools both data and models; to develop a strategy for the rapid development, evaluation, and application of comprehensive prognostic models of the Global Biogeochemical Subsystem which could eventually be linked with models of the Physical-Climate Subsystem; to propose, promote, and facilitate experiments with existing models or by linking subcomponent models, especially those associated with IGBP Core Projects and with WCRP efforts. Such experiments would be focused upon resolving interface issues and questions associated with developing an understanding of the prognostic behavior of key processes; to clarify key scientific issues facing the development of Global Biogeochemical Models and the coupling of these models to General Circulation Models; to assist the Intergovernmental Panel on Climate Change (IPCC) process by conducting timely studies that focus upon elucidating important unresolved scientific issues associated with the changing biogeochemical cycles of the planet and upon the role of the biosphere in the physical-climate subsystem, particularly its role in the global hydrological cycle; and to advise the SC-IGBP on progress in developing comprehensive Global Biogeochemical Models and to maintain scientific liaison with the WCRP Steering Group on Global Climate Modelling

    The atmospheric effects of stratospheric aircraft: A third program report

    Get PDF
    A third report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High-Speed Research Program (HSRP) is presented. Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent United Nations Environment Program scientific assessment showed that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA was designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This third report marks the midpoint of the program and presents the status of the ongoing research on the impact of stratospheric aircraft on the atmosphere as reported at the third annual AESA Program meeting in June 1993. The focus of the program is on predicted atmospheric changes resulting from projected HSCT emissions. Topics reported on cover how high-speed civil transports (HSCT) might affect stratospheric ozone, emissions scenarios and databases to assess potential atmospheric effects from HSCT's, calculated results from 2-D zonal mean models using emissions data, engine trace constituent measurements, and exhaust plume/aircraft wake vortex interactions

    Planetary wave activity in the stratosphere

    Get PDF

    Radiative forcing of climate: the historical evolution of the radiative forcing concept, the forcing agents and their quantification, and applications

    Get PDF
    We describe the historical evolution of the conceptualization, formulation, quantification, application and utilization of “radiative forcing (RF, see e.g., IPCC, 1990)” of Earth’s climate. Basic theories of shortwave and long wave radiation were developed through the 19th and 20th centuries, and established the analytical framework for defining and quantifying the perturbations to the Earth’s radiative energy balance by natural and anthropogenic influences. The insight that the Earth’s climate could be radiatively forced by changes in carbon dioxide, first introduced in the 19th century, gained empirical support with sustained observations of the atmospheric concentrations of the gas beginning in 1957. Advances in laboratory and field measurements, theory, instrumentation, computational technology, data and analysis of well-mixed greenhouse gases and the global climate system through the 20th Century enabled the development and formalism of RF; this allowed RF to be related to changes in global-mean surface temperature with the aid of increasingly sophisticated models. This in turn led to RF becoming firmly established as a principal concept in climate science by 1990. The linkage with surface temperature has proven to be the most important application of the RF concept, enabling a simple metric to evaluate the relative climate impacts of different agents. The late 1970s and 1980s saw accelerated developments in quantification including the first assessment of the effect of the forcing due to doubling of carbon dioxide on climate (the “Charney” report, National Research Council, 1979). The concept was subsequently extended to a wide variety of agents beyond well-mixed greenhouse gases (WMGHGs: carbon dioxide, methane, nitrous oxide, and halocarbons) to short-lived species such as ozone. The WMO (1986) and IPCC (1990) international assessments began the important sequence of periodic evaluations and quantifications of the forcings by natural (solar irradiance changes and stratospheric aerosols resulting from volcanic eruptions) and a growing set of anthropogenic agents (WMGHGs, ozone, aerosols, land surface changes, contrails). From 1990s to the present, knowledge and scientific confidence in the radiative agents acting on the climate system has proliferated. The conceptual basis of RF has also evolved as both our understanding of the way radiative forcing drives climate change, and the diversity of the forcing mechanisms, have grown. This has led to the current situation where “Effective Radiative Forcing (ERF, e.g., IPCC, 2013)” is regarded as the preferred practical definition of radiative forcing in order to better capture the link between forcing and global-mean surface temperature change. The use of ERF, however, comes with its own attendant issues, including challenges in its diagnosis from climate models, its applications to small forcings, and blurring of the distinction between rapid climate adjustments (fast responses) and climate feedbacks; this will necessitate further elaboration of its utility in the future. Global climate model simulations of radiative perturbations by various agents have established how the forcings affect other climate variables besides temperature e.g., precipitation. The forcing-response linkage as simulated by models, including the diversity in the spatial distribution of forcings by the different agents, has provided a practical demonstration of the effectiveness of agents in perturbing the radiative energy balance and causing climate changes. The significant advances over the past half-century have established, with very high confidence, that the global-mean ERF due to human activity since preindustrial times is positive (the 2013 IPCC assessment gives a best estimate of 2.3 W m-2, with a range from 1.1 to 3.3 W m-2; 90% confidence interval). Further, except in the immediate aftermath of climatically-significant volcanic eruptions, the net anthropogenic forcing dominates over natural radiative forcing mechanisms. Nevertheless, the substantial remaining uncertainty in the net anthropogenic ERF leads to large uncertainties in estimates of climate sensitivity from observations and in predicting future climate impacts. The uncertainty in the ERF arises principally from the incorporation of the rapid climate adjustments in the formulation, the well-recognized difficulties in characterizing the preindustrial state of the atmosphere, and the incomplete knowledge of the interactions of aerosols with clouds. This uncertainty impairs the quantitative evaluation of climate adaptation and mitigation pathways in the future. A grand challenge in Earth System science lies in continuing to sustain the relatively simple essence of the radiative forcing concept in a form similar to that originally devised, and at the same time improving the quantification of the forcing. This, in turn, demands an accurate, yet increasingly complex and comprehensive, accounting of the relevant processes in the climate system

    Middle Atmosphere Program. Handbook for MAP. Volume 18: Extended abstracts

    Get PDF
    Various topics related to middle atmosphere research are discussed. Variability of the middle atmosphere during winter, climatology, gravity waves, atmospheric turbulence, transport processes of trace species and aerosols, and research in the Antarctic are among the topics covered
    corecore