174,071 research outputs found

    Calibrated Prediction Intervals for Neural Network Regressors

    Get PDF
    Ongoing developments in neural network models are continually advancing the state of the art in terms of system accuracy. However, the predicted labels should not be regarded as the only core output; also important is a well-calibrated estimate of the prediction uncertainty. Such estimates and their calibration are critical in many practical applications. Despite their obvious aforementioned advantage in relation to accuracy, contemporary neural networks can, generally, be regarded as poorly calibrated and as such do not produce reliable output probability estimates. Further, while post-processing calibration solutions can be found in the relevant literature, these tend to be for systems performing classification. In this regard, we herein present two novel methods for acquiring calibrated predictions intervals for neural network regressors: empirical calibration and temperature scaling. In experiments using different regression tasks from the audio and computer vision domains, we find that both our proposed methods are indeed capable of producing calibrated prediction intervals for neural network regressors with any desired confidence level, a finding that is consistent across all datasets and neural network architectures we experimented with. In addition, we derive an additional practical recommendation for producing more accurate calibrated prediction intervals. We release the source code implementing our proposed methods for computing calibrated predicted intervals. The code for computing calibrated predicted intervals is publicly available

    A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification

    Full text link
    Black-box machine learning learning methods are now routinely used in high-risk settings, like medical diagnostics, which demand uncertainty quantification to avoid consequential model failures. Distribution-free uncertainty quantification (distribution-free UQ) is a user-friendly paradigm for creating statistically rigorous confidence intervals/sets for such predictions. Critically, the intervals/sets are valid without distributional assumptions or model assumptions, possessing explicit guarantees even with finitely many datapoints. Moreover, they adapt to the difficulty of the input; when the input example is difficult, the uncertainty intervals/sets are large, signaling that the model might be wrong. Without much work and without retraining, one can use distribution-free methods on any underlying algorithm, such as a neural network, to produce confidence sets guaranteed to contain the ground truth with a user-specified probability, such as 90%. Indeed, the methods are easy-to-understand and general, applying to many modern prediction problems arising in the fields of computer vision, natural language processing, deep reinforcement learning, and so on. This hands-on introduction is aimed at a reader interested in the practical implementation of distribution-free UQ who is not necessarily a statistician. We lead the reader through the practical theory and applications of distribution-free UQ, beginning with conformal prediction and culminating with distribution-free control of any risk, such as the false-discovery rate, false positive rate of out-of-distribution detection, and so on. We will include many explanatory illustrations, examples, and code samples in Python, with PyTorch syntax. The goal is to provide the reader a working understanding of distribution-free UQ, allowing them to put confidence intervals on their algorithms, with one self-contained document.Comment: Blog and tutorial video http://angelopoulos.ai/blog/posts/gentle-intro

    Optimal prediction intervals of wind power generation

    Get PDF
    Accurate and reliable wind power forecasting is essential to power system operation. Given significant uncertainties involved in wind generation, probabilistic interval forecasting provides a unique solution to estimate and quantify the potential impacts and risks facing system operation with wind penetration beforehand. This paper proposes a novel hybrid intelligent algorithm approach to directly formulate optimal prediction intervals of wind power generation based on extreme learning machine and particle swarm optimization. Prediction intervals with associated confidence levels are generated through direct optimization of both the coverage probability and sharpness to ensure the quality. The proposed method does not involve the statistical inference or distribution assumption of forecasting errors needed in most existing methods. Case studies using real wind farm data from Australia have been conducted. Comparing with benchmarks applied, experimental results demonstrate the high efficiency and reliability of the developed approach. It is therefore convinced that the proposed method provides a new generalized framework for probabilistic wind power forecasting with high reliability and flexibility and has a high potential of practical applications in power systems

    Confidence intervals of prediction accuracy measures for multivariable prediction models based on the bootstrap-based optimism correction methods

    Full text link
    In assessing prediction accuracy of multivariable prediction models, optimism corrections are essential for preventing biased results. However, in most published papers of clinical prediction models, the point estimates of the prediction accuracy measures are corrected by adequate bootstrap-based correction methods, but their confidence intervals are not corrected, e.g., the DeLong's confidence interval is usually used for assessing the C-statistic. These naive methods do not adjust for the optimism bias and do not account for statistical variability in the estimation of parameters in the prediction models. Therefore, their coverage probabilities of the true value of the prediction accuracy measure can be seriously below the nominal level (e.g., 95%). In this article, we provide two generic bootstrap methods, namely (1) location-shifted bootstrap confidence intervals and (2) two-stage bootstrap confidence intervals, that can be generally applied to the bootstrap-based optimism correction methods, i.e., the Harrell's bias correction, 0.632, and 0.632+ methods. In addition, they can be widely applied to various methods for prediction model development involving modern shrinkage methods such as the ridge and lasso regressions. Through numerical evaluations by simulations, the proposed confidence intervals showed favourable coverage performances. Besides, the current standard practices based on the optimism-uncorrected methods showed serious undercoverage properties. To avoid erroneous results, the optimism-uncorrected confidence intervals should not be used in practice, and the adjusted methods are recommended instead. We also developed the R package predboot for implementing these methods (https://github.com/nomahi/predboot). The effectiveness of the proposed methods are illustrated via applications to the GUSTO-I clinical trial

    Likelihood based observability analysis and confidence intervals for predictions of dynamic models

    Get PDF
    Mechanistic dynamic models of biochemical networks such as Ordinary Differential Equations (ODEs) contain unknown parameters like the reaction rate constants and the initial concentrations of the compounds. The large number of parameters as well as their nonlinear impact on the model responses hamper the determination of confidence regions for parameter estimates. At the same time, classical approaches translating the uncertainty of the parameters into confidence intervals for model predictions are hardly feasible. In this article it is shown that a so-called prediction profile likelihood yields reliable confidence intervals for model predictions, despite arbitrarily complex and high-dimensional shapes of the confidence regions for the estimated parameters. Prediction confidence intervals of the dynamic states allow a data-based observability analysis. The approach renders the issue of sampling a high-dimensional parameter space into evaluating one-dimensional prediction spaces. The method is also applicable if there are non-identifiable parameters yielding to some insufficiently specified model predictions that can be interpreted as non-observability. Moreover, a validation profile likelihood is introduced that should be applied when noisy validation experiments are to be interpreted. The properties and applicability of the prediction and validation profile likelihood approaches are demonstrated by two examples, a small and instructive ODE model describing two consecutive reactions, and a realistic ODE model for the MAP kinase signal transduction pathway. The presented general approach constitutes a concept for observability analysis and for generating reliable confidence intervals of model predictions, not only, but especially suitable for mathematical models of biological systems

    The variable elasticity of substitution function and endogenous growth : an empirical evidence from Vietnam

    Get PDF
    Purpose: To specify a Variable Elasticity of Substitution function (VES), in which the estimated Elasticity of Substitution (ES) can give some implications for the tendency of economic growth in the Vietnames manufacturing sector. Design/Methodology/Approach: The contribution and the relevant methodology is based on the Bayesian approach having some advantages over the frequentist method: (i) the simulation and prediction results are more reliable in Bayesian analysis due to combining prior knowledge about parameters with obverved data to compose a posterior model, whereas the frequentist approach is based only on available data; (ii) in probability sense, Bayesian credible intervals have a straightforward interpretation compared to frequentist confidence intervals. The Bayesian nonlinear regresion performed is suitable for fitting production functions and depicting economic growth. Findings: The specified VES function has the ES greater than one and this finding contradicts many previous empirical studies in the growth theory. This result points to the possibility of unbounded endogenous growth in the Vietnamese manufacturing sector. Practical implications: Based on the empirical results, in order to realize the possibility of endogenous growth for the studied Vietnamese manufacturing sector, policies of enforcing investment are needed. To raise the level of science and technique, as well as human capital of the Vietnamese enterprises, at the same time, there is great necessity to encourage R&D activities in both the private and public sectors. Originality/Value: Although this study organically builds upon recent studies about the link between the VES, the elasticity of factor subsitution and economic growth, its results proved that the VES is more appropriate than the Cobb-Douglas and the Constant Elasticity of Substitution (CES) to explain economic growth in the view of capital-labor relationship.peer-reviewe
    corecore