1,614 research outputs found

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure

    Bayesian inference for optimal dynamic treatment regimes in practice

    Full text link
    In this work, we examine recently developed methods for Bayesian inference of optimal dynamic treatment regimes (DTRs). DTRs are a set of treatment decision rules aimed at tailoring patient care to patient-specific characteristics, thereby falling within the realm of precision medicine. In this field, researchers seek to tailor therapy with the intention of improving health outcomes; therefore, they are most interested in identifying optimal DTRs. Recent work has developed Bayesian methods for identifying optimal DTRs in a family indexed by ψ\psi via Bayesian dynamic marginal structural models (MSMs) (Rodriguez Duque et al., 2022a); we review the proposed estimation procedure and illustrate its use via the new BayesDTR R package. Although methods in (Rodriguez Duque et al., 2022a) can estimate optimal DTRs well, they may lead to biased estimators when the model for the expected outcome if everyone in a population were to follow a given treatment strategy, known as a value function, is misspecified or when a grid search for the optimum is employed. We describe recent work that uses a Gaussian process (GPGP) prior on the value function as a means to robustly identify optimal DTRs (Rodriguez Duque et al., 2022b). We demonstrate how a GPGP approach may be implemented with the BayesDTR package and contrast it with other value-search approaches to identifying optimal DTRs. We use data from an HIV therapeutic trial in order to illustrate a standard analysis with these methods, using both the original observed trial data and an additional simulated component to showcase a longitudinal (two-stage DTR) analysis

    Implementing Loss Distribution Approach for Operational Risk

    Full text link
    To quantify the operational risk capital charge under the current regulatory framework for banking supervision, referred to as Basel II, many banks adopt the Loss Distribution Approach. There are many modeling issues that should be resolved to use the approach in practice. In this paper we review the quantitative methods suggested in literature for implementation of the approach. In particular, the use of the Bayesian inference method that allows to take expert judgement and parameter uncertainty into account, modeling dependence and inclusion of insurance are discussed

    A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning

    Full text link
    We present a tutorial on Bayesian optimization, a method of finding the maximum of expensive cost functions. Bayesian optimization employs the Bayesian technique of setting a prior over the objective function and combining it with evidence to get a posterior function. This permits a utility-based selection of the next observation to make on the objective function, which must take into account both exploration (sampling from areas of high uncertainty) and exploitation (sampling areas likely to offer improvement over the current best observation). We also present two detailed extensions of Bayesian optimization, with experiments---active user modelling with preferences, and hierarchical reinforcement learning---and a discussion of the pros and cons of Bayesian optimization based on our experiences
    corecore