2,470 research outputs found

    Performance of video processing at the edge for crowd-monitoring applications

    Get PDF
    Video analytics has a key role to play in smart cities and connected community applications such as crowd counting, activity detection, event classification, traffic counting etc. Using a cloud-centric approach where data is funneled to a central processor presents a number of key problems such as available bandwidth, real-time responsiveness and personal data privacy issues. With the development of edge computing, a new paradigm for smart data management is emerging. Raw video feeds can be pre-processed at the point of capture while integration and deeper analytics is performed in the cloud. In this paper we explore the capacity of video processing at the edge and shown that basic image processing can be achieved in near real-time on low-powered gateway devices. We have also investigated deep learning model capabilities for crowd counting in this context showing that its performance is highly dependent on the input size and re-scaling video frames can optimise processing and performance. Increased edge processing resolves a number of issues in video analytics for crowd monitoring applications

    Understanding packet loss for sound monitoring in a smart stadium IoT testbed

    Get PDF
    The Smart Stadium for Smarter Living project provides an end-to-end testbed for IoT innovation through a collaboration between Croke Park Stadium in Dublin, Ireland and Dublin City University, Intel and Microsoft. This enables practical evaluations of IoT solutions in a controlled environment that is small enough to conduct trials but large enough to prove and challenge the technologies. An evaluation of sound monitoring capabilities during the 2016 sporting finals was used to test the capture, transfer, storage and analysis of decibel level sound monitoring. The purpose of the evaluation was to use existing sound level microphones to measure crowd response to pre-determined events for display on big screens at half-time and to test the end-to-end performance of the testbed. While this is not the specific original purpose of the sound level microphones, it provided a useful test case and produced engaging content for the project. Analysis of the data streams showed significant packet loss during the events and further investigations were conducted to understand where and how this loss occurred. This paper describes the smart stadium testbed configuration using Intel gateways linking with the Azure cloud platform and analyses the performance of the system during the sound monitoring evaluation

    Understanding the Detection of View Fraud in Video Content Portals

    Full text link
    While substantial effort has been devoted to understand fraudulent activity in traditional online advertising (search and banner), more recent forms such as video ads have received little attention. The understanding and identification of fraudulent activity (i.e., fake views) in video ads for advertisers, is complicated as they rely exclusively on the detection mechanisms deployed by video hosting portals. In this context, the development of independent tools able to monitor and audit the fidelity of these systems are missing today and needed by both industry and regulators. In this paper we present a first set of tools to serve this purpose. Using our tools, we evaluate the performance of the audit systems of five major online video portals. Our results reveal that YouTube's detection system significantly outperforms all the others. Despite this, a systematic evaluation indicates that it may still be susceptible to simple attacks. Furthermore, we find that YouTube penalizes its videos' public and monetized view counters differently, the former being more aggressive. This means that views identified as fake and discounted from the public view counter are still monetized. We speculate that even though YouTube's policy puts in lots of effort to compensate users after an attack is discovered, this practice places the burden of the risk on the advertisers, who pay to get their ads displayed.Comment: To appear in WWW 2016, Montr\'eal, Qu\'ebec, Canada. Please cite the conference version of this pape

    The Implementation of Smart Mobility for Smart Cities: A Case Study in Qatar

    Get PDF
    This paper contributes to building a systematic view of the mobility characteristics of smart cities by reviewing the lessons learned from the best practices implemented around the world. The main features of smart cities, such as smart homes, smart infrastructure, smart operations, smart services, smart utilities, smart energy, smart governance, smart lifestyle, smart business, and smart mobility in North America, Asia, and Europe are briefly reviewed. The study predominantly focuses on smart mobility features and their implications in newly built smart cities. As a case study, the modern city of Lusail located in the north of Doha, Qatar is considered. The provision of car park management and guidance, real-time traffic signal control, traffic information system, active-modes arrangement in promenade and busy urban avenues, LRT, buses, taxis, and water taxis information system, and multimodal journey planning facilities in the Lusail smart city is discussed in this study. Consequently, the implications of smart mobility features on adopting Intelligent Transportation Systems (ITS) will be studied. The study demonstrates that the implementation of Information and Communication Technologies (ICT) when supported by Intelligent Transportation Systems (ITS), could result in making the most efficient use of existing transportation infrastructure and consequently improve the safety and security, mobility, and the environment in urban areas. The findings of this study could be considered an initial step in the implementation of Mobility-as-a-Service (MaaS) in cities with advanced public transportation such as Doha, the capital of Qatar. Doi: 10.28991/CEJ-2022-08-10-09 Full Text: PD

    Trailgazers: A Scoping Study of Footfall Sensors to Aid Tourist Trail Management in Ireland and Other Atlantic Areas of Europe

    Get PDF
    This paper examines the current state of the art of commercially available outdoor footfall sensor technologies and defines individually tailored solutions for the walking trails involved in an ongoing research project. Effective implementation of footfall sensors can facilitate quantitative analysis of user patterns, inform maintenance schedules and assist in achieving management objectives, such as identifying future user trends like cyclo-tourism. This paper is informed by primary research conducted for the EU funded project TrailGazersBid (hereafter referred to as TrailGazers), led by Donegal County Council, and has Sligo County Council and Causeway Coast and Glens Council (NI) among the 10 project partners. The project involves three trails in Ireland and five other trails from Europe for comparison. It incorporates the footfall capture and management experiences of trail management within the EU Atlantic area and desk-based research on current footfall technologies and data capture strategies. We have examined 6 individual types of sensor and discuss the advantages and disadvantages of each. We provide key learnings and insights that can help to inform trail managers on sensor options, along with a decision-making tool based on the key factors of the power source and mounting method. The research findings can also be applied to other outdoor footfall monitoring scenarios

    Enhancing camera surveillance using computer vision: a research note

    Full text link
    Purpose\mathbf{Purpose} - The growth of police operated surveillance cameras has out-paced the ability of humans to monitor them effectively. Computer vision is a possible solution. An ongoing research project on the application of computer vision within a municipal police department is described. The paper aims to discuss these issues. Design/methodology/approach\mathbf{Design/methodology/approach} - Following the demystification of computer vision technology, its potential for police agencies is developed within a focus on computer vision as a solution for two common surveillance camera tasks (live monitoring of multiple surveillance cameras and summarizing archived video files). Three unaddressed research questions (can specialized computer vision applications for law enforcement be developed at this time, how will computer vision be utilized within existing public safety camera monitoring rooms, and what are the system-wide impacts of a computer vision capability on local criminal justice systems) are considered. Findings\mathbf{Findings} - Despite computer vision becoming accessible to law enforcement agencies the impact of computer vision has not been discussed or adequately researched. There is little knowledge of computer vision or its potential in the field. Originality/value\mathbf{Originality/value} - This paper introduces and discusses computer vision from a law enforcement perspective and will be valuable to police personnel tasked with monitoring large camera networks and considering computer vision as a system upgrade

    Enriching the fan experience in a smart stadium using internet of things technologies

    Get PDF
    Rapid urbanization has brought about an influx of people to cities, tipping the scale between urban and rural living. Population predictions estimate that 64% of the global population will reside in cities by 2050. To meet the growing resource needs, improve management, reduce complexities, and eliminate unnecessary costs while enhancing the quality of life of citizens, cities are increasingly exploring open innovation frameworks and smart city initiatives that target priority areas including transportation, sustainability, and security. The size and heterogeneity of urban centers impede progress of technological innovations for smart cities. We propose a Smart Stadium as a living laboratory to balance both size and heterogeneity so that smart city solutions and Internet of Things (IoT) technologies may be deployed and tested within an environment small enough to practically trial but large and diverse enough to evaluate scalability and efficacy. The Smart Stadium for Smart Living initiative brings together multiple institutions and partners including Arizona State University (ASU), Dublin City University (DCU), Intel Corporation, and Gaelic Athletic Association (GAA), to turn ASU's Sun Devil Stadium and Ireland's Croke Park Stadium into twinned smart stadia to investigate IoT and smart city technologies and applications

    Simplified Video Surveillance Framework for Dynamic Object Detection under Challenging Environment

    Get PDF
    An effective video surveillance system is highly essential in order to ensure constructing better form of video analytics. Existing review of literatures pertaining to video analytics are found to directly implement algorithms on the top of the video file without much emphasis on following problems i.e. i) dynamic orientation of subject, ii)poor illumination condition, iii) identification and classification of subjects, and iv) faster response time. Therefore, the proposed system implements an analytical concept that uses depth-image of the video feed along with the original colored video feed to apply an algorithm for extracting significant information about the motion blob of the dynamic subjects. Implemented in MATLAB, the study outcome shows that it is capable of addressing all the above mentioned problems associated with existing research trends on video analytics by using a very simple and non-iterative process of implementation. The applicability of the proposed system in practical world is thereby proven

    Towards Data Sharing across Decentralized and Federated IoT Data Analytics Platforms

    Get PDF
    In the past decade the Internet-of-Things concept has overwhelmingly entered all of the fields where data are produced and processed, thus, resulting in a plethora of IoT platforms, typically cloud-based, that centralize data and services management. In this scenario, the development of IoT services in domains such as smart cities, smart industry, e-health, automotive, are possible only for the owner of the IoT deployments or for ad-hoc business one-to-one collaboration agreements. The realization of "smarter" IoT services or even services that are not viable today envisions a complete data sharing with the usage of multiple data sources from multiple parties and the interconnection with other IoT services. In this context, this work studies several aspects of data sharing focusing on Internet-of-Things. We work towards the hyperconnection of IoT services to analyze data that goes beyond the boundaries of a single IoT system. This thesis presents a data analytics platform that: i) treats data analytics processes as services and decouples their management from the data analytics development; ii) decentralizes the data management and the execution of data analytics services between fog, edge and cloud; iii) federates peers of data analytics platforms managed by multiple parties allowing the design to scale into federation of federations; iv) encompasses intelligent handling of security and data usage control across the federation of decentralized platforms instances to reduce data and service management complexity. The proposed solution is experimentally evaluated in terms of performances and validated against use cases. Further, this work adopts and extends available standards and open sources, after an analysis of their capabilities, fostering an easier acceptance of the proposed framework. We also report efforts to initiate an IoT services ecosystem among 27 cities in Europe and Korea based on a novel methodology. We believe that this thesis open a viable path towards a hyperconnection of IoT data and services, minimizing the human effort to manage it, but leaving the full control of the data and service management to the users' will
    corecore