99 research outputs found

    Hierarchical Communication Diagrams

    Get PDF
    Formal modelling languages range from strictly textual ones like process algebra scripts to visual modelling languages based on hierarchical graphs like coloured Petri nets. Approaches equipped with visual modelling capabilities make developing process easier and help users to cope with more complex systems. Alvis is a modelling language that combines possibilities of formal models verification with flexibility and simplicity of practical programming languages. The paper deals with hierarchical communication diagrams - the visual layer of the Alvis modelling language. It provides all necessary information to model system structure with Alvis, to manipulate a model hierarchy and to understand a model semantics. All considered concepts are discussed using illustrative examples

    Alvis models of safety critical systems state-base verification with nuXmv

    Full text link

    at the 14th Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2011)

    Get PDF
    Technical Report TR-2011/1, Department of Languages and Computation. University of Almeria November 2011. Joaquín Cañadas, Grzegorz J. Nalepa, Joachim Baumeister (Editors)The seventh workshop on Knowledge Engineering and Software Engineering (KESE7) was held at the Conference of the Spanish Association for Artificial Intelligence (CAEPIA-2011) in La Laguna (Tenerife), Spain, and brought together researchers and practitioners from both fields of software engineering and artificial intelligence. The intention was to give ample space for exchanging latest research results as well as knowledge about practical experience.University of Almería, Almería, Spain. AGH University of Science and Technology, Kraków, Poland. University of Würzburg, Würzburg, Germany

    Computer Science at the University of Helsinki 1998

    Get PDF

    University of Helsinki Department of Computer Science Annual Report 1998

    Get PDF

    Modeling and Simulation of Biological Systems through Electronic Design Automation techniques

    Get PDF
    Modeling and simulation of biological systems is a key requirement for integrating invitro and in-vivo experimental data. In-silico simulation allows testing different experimental conditions, thus helping in the discovery of the dynamics that regulate the system. These dynamics include errors in the cellular information processing that are responsible for diseases such as cancer, autoimmunity, and diabetes as well as drug effects to the system (Gonalves, 2013). In this context, modeling approaches can be classified into two categories: quantitative and qualitative models. Quantitative modeling allows for a natural representation of molecular and gene networks and provides the most precise prediction. Nevertheless, the lack of kinetic data (and of quantitative data in general) hampers its use for many situations (Le Novere, 2015). In contrast, qualitative models simplify the biological reality and are often able to reproduce the system behavior. They cannot describe actual concentration levels nor realistic time scales. As a consequence, they cannot be used to explain and predict the outcome of biological experiments that yield quantitative data. However, given a biological network consisting of input (e.g., receptors), intermediate, and output (e.g., transcription factors) signals, they allow studying the input-output relationships through discrete simulation (Samaga, 2013). Boolean models are gaining an increasing interest in reproducing dynamic behaviors, understanding processes, and predicting emerging properties of cellular signaling networks through in-silico experiments. They are emerging as a valid alternative to the quantitative approaches (i.e., based on ordinary differential equations) for exploratory modeling when little is known about reaction kinetics or equilibrium constants in the context of gene expression or signaling. Even though several approaches and software have been recently proposed for logic modeling of biological systems, they are limited to specific contexts and they lack of automation in analyzing biological properties such as complex attractors, and molecule vulnerability. This thesis proposes a platform based on Electronic Design Automation (EDA) technologies for qualitative modeling and simulation of Biological Systems. It aims at overtaking limitations that affect the most recent qualitative tools

    University of Helsinki Department of Computer Science Annual Report 1999

    Get PDF

    1993 - 1994 University of Dallas Bulletin

    Get PDF

    Probability of breaking waves in random seas

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D94941 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore