47 research outputs found

    A Digital Cash Paradigm with Valued and No-Valued e-Coins

    Get PDF
    Digital cash is a form of money that is stored digitally. Its main advantage when compared to traditional credit or debit cards is the possibility of carrying out anonymous transactions. Diverse digital cash paradigms have been proposed during the last decades, providing different approaches to avoid the double-spending fraud, or features like divisibility or transferability. This paper presents a new digital cash paradigm that includes the so-called no-valued e-coins, which are e-coins that can be generated free of charge by customers. A vendor receiving a payment cannot distinguish whether the received e-coin is valued or not, but the customer will receive the requested digital item only in the former case. A straightforward application of bogus transactions involving no-valued e-coins is the masking of consumption patterns. This new paradigm has also proven its validity in the scope of privacy-preserving pay-by-phone parking systems, and we believe it can become a very versatile building block in the design of privacy-preserving protocols in other areas of research. This paper provides a formal description of the new paradigm, including the features required for each of its components together with a formal analysis of its security.This research was funded by the Spanish Ministry of Science, Innovation and Universities grant number MTM2017-83271-R

    ZeroCT: Improving ZeroCoin with Confidential Transactions and more

    Get PDF
    The Zerocoin protocol is a set of cryptographic algorithms which embedded in a cryptocurrency provide anonymous swap of tokens in a mathematically provable way by using cryptographic accumulators. Functionally it can be described as a black box where an actor can introduce an arbitrary number of coins, and later withdraw them without leaving evidence of connection between both actions. The withdrawing step admits a destination for the coins different from the original minter, but unconditionally requires a previous mint action and does not accept the transfer of coins without leaving the accumulator, thus exposing the traceability of the coins. We propose an alternative design which for the first time combines the virtues of Zerocoin with those of Confidential Transactions offering fully-featured anonymous transactions between individuals with private amounts

    A Secure and Efficient Off-line Electronic Payment System forWireless Networks

    Get PDF
    An electronic cash system allows the exchange of digital coins with value assured by the bank’s signature and with concealed user identity. In an electronic cash system, a user can withdraw coins from the bank and then spends each coin anonymously and unlinkably. In this paper we propose a secure and efficient off-line electronic payment system based on bilinear pairings and group signature schemes. The anonymity of the customer is revocable by a trustee in case of a dispute. Because the amount of communication in the payment protocol is about 480 bits, the proposed off-line electronic payment system can be used in wireless networks with limited bandwidth

    How to win the clonewars: efficient periodic n-times anonymous authentication

    Get PDF
    We create a credential system that lets a user anonymously authenticate at most n times in a single time period. A user withdraws a dispenser of n e-tokens. She shows an e-token to a verifier to authenticate herself; each e-token can be used only once, however, the dispenser automatically refreshes every time period. The only prior solution to this problem, due to DamgËšard et al. [30], uses protocols that are a factor of k slower for the user and verifier, where k is the security parameter. DamgËšard et al. also only support one authentication per time period, while we support n. Because our construction is based on e-cash, we can use existing techniques to identify a cheating user, trace all of her e-tokens, and revoke her dispensers. We also offer a new anonymity service: glitch protection for basically honest users who (occasionally) reuse etokens. The verifier can always recognize a reused e-token; however, we preserve the anonymity of users who do not reuse e-tokens too often.

    Privacy-Preserving Electronic Ticket Scheme with Attribute-based Credentials

    Get PDF
    Electronic tickets (e-tickets) are electronic versions of paper tickets, which enable users to access intended services and improve services' efficiency. However, privacy may be a concern of e-ticket users. In this paper, a privacy-preserving electronic ticket scheme with attribute-based credentials is proposed to protect users' privacy and facilitate ticketing based on a user's attributes. Our proposed scheme makes the following contributions: (1) users can buy different tickets from ticket sellers without releasing their exact attributes; (2) two tickets of the same user cannot be linked; (3) a ticket cannot be transferred to another user; (4) a ticket cannot be double spent; (5) the security of the proposed scheme is formally proven and reduced to well known (q-strong Diffie-Hellman) complexity assumption; (6) the scheme has been implemented and its performance empirically evaluated. To the best of our knowledge, our privacy-preserving attribute-based e-ticket scheme is the first one providing these five features. Application areas of our scheme include event or transport tickets where users must convince ticket sellers that their attributes (e.g. age, profession, location) satisfy the ticket price policies to buy discounted tickets. More generally, our scheme can be used in any system where access to services is only dependent on a user's attributes (or entitlements) but not their identities.Comment: 18pages, 6 figures, 2 table

    More Compact E-Cash with Efficient Coin Tracing

    Get PDF
    In 1982, Chaum \cite{Chaum82} pioneered the anonymous e-cash which finds many applications in e-commerce. In 1993, Brands \cite{Brands93apr,Brands93,Brands93tm} and Ferguson \cite Ferguson93c,Ferguson93} published on single-term offline anonymous e-cash which were the first practical e-cash. Their constructions used blind signatures and were inefficient to implement multi-spendable e-cash. In 1995, Camenisch, Hohenberger, and Lysyanskaya \cite{CaHoLy05} gave the first compact 2â„“2^\ell-spendable e-cash, using zero-knowledge-proof techniques. They left an open problem of the simultaneous attainment of O(1)O(1)-unit wallet size and efficient coin tracing. The latter property is needed to revoke {\em bad} coins from over-spenders. In this paper, we solve \cite{CaHoLy05}\u27s open problem, and thus enable the first practical compact e-cash. We use a new technique whose security reduces to a new intractability Assumption: the {\em Decisional Harmonic-Relationed Diffie-Hellman (DHRDH) Assumption}

    New Code-Based Privacy-Preserving Cryptographic Constructions

    Get PDF
    Code-based cryptography has a long history but did suffer from periods of slow development. The field has recently attracted a lot of attention as one of the major branches of post-quantum cryptography. However, its subfield of privacy-preserving cryptographic constructions is still rather underdeveloped, e.g., important building blocks such as zero-knowledge range proofs and set membership proofs, and even proofs of knowledge of a hash preimage, have not been known under code-based assumptions. Moreover, almost no substantial technical development has been introduced in the last several years. This work introduces several new code-based privacy-preserving cryptographic constructions that considerably advance the state-of-the-art in code-based cryptography. Specifically, we present 33 major contributions, each of which potentially yields various other applications. Our first contribution is a code-based statistically hiding and computationally binding commitment scheme with companion zero-knowledge (ZK) argument of knowledge of a valid opening that can be easily extended to prove that the committed bits satisfy other relations. Our second contribution is the first code-based zero-knowledge range argument for committed values, with communication cost logarithmic in the size of the range. A special feature of our range argument is that, while previous works on range proofs/arguments (in all branches of cryptography) only address ranges of non-negative integers, our protocol can handle signed fractional numbers, and hence, can potentially find a larger scope of applications. Our third contribution is the first code-based Merkle-tree accumulator supported by ZK argument of membership, which has been known to enable various interesting applications. In particular, it allows us to obtain the first code-based ring signatures and group signatures with logarithmic signature sizes

    Decentralized Anonymous Payments

    Get PDF
    Decentralized payment systems such as Bitcoin record monetary transactions between pseudonyms in an append-only ledger known as a blockchain. Because the ledger is public, permanent, and readable by anyone, a user’s privacy depends solely on the difficulty of linking pseudonymous transactions either to each other or to real identities. Both academic work and commercial services have shown that such linking is, in fact, very easy. Anyone at any point in the future can download a user’s transaction history and analyze it. In this work, we propose and implement privacy preserving coins, payments, and payment channels that can be built atop a ledger. In particular we propose: * Zerocoin A blockchain based protocol for breaking the link between a transaction that receives non-anonymous funds and the subsequent transaction that spends it. * Zerocash The successor to Zerocoin, a blockchain based payment system supporting anonymous payments of arbitrary hidden value to other parties. While payments are recorded publicly in the blockchain, they reveal almost nothing else: the recipient learns only the amount paid but not the source and anyone else learns only that a payment of some value to someone took place. *Bolt A payment channel protocol that allows two parties to anonymously and securely make many unlinkable payments while only posting two messages to the blockchain. This protocol provides for instant payments while providing drastically improved scalability as every transaction is no longer recorded in the blockchain
    corecore