388 research outputs found

    Principles, fundamentals, and applications of programmable integrated photonics

    Full text link
    [EN] Programmable integrated photonics is an emerging new paradigm that aims at designing common integrated optical hardware resource configurations, capable of implementing an unconstrained variety of functionalities by suitable programming, following a parallel but not identical path to that of integrated electronics in the past two decades of the last century. Programmable integrated photonics is raising considerable interest, as it is driven by the surge of a considerable number of new applications in the fields of telecommunications, quantum information processing, sensing, and neurophotonics, calling for flexible, reconfigurable, low-cost, compact, and low-power-consuming devices that can cooperate with integrated electronic devices to overcome the limitation expected by the demise of Moore¿s Law. Integrated photonic devices exploiting full programmability are expected to scale from application-specific photonic chips (featuring a relatively low number of functionalities) up to very complex application-agnostic complex subsystems much in the same way as field programmable gate arrays and microprocessors operate in electronics. Two main differences need to be considered. First, as opposed to integrated electronics, programmable integrated photonics will carry analog operations over the signals to be processed. Second, the scale of integration density will be several orders of magnitude smaller due to the physical limitations imposed by the wavelength ratio of electrons and light wave photons. The success of programmable integrated photonics will depend on leveraging the properties of integrated photonic devices and, in particular, on research into suitable interconnection hardware architectures that can offer a very high spatial regularity as well as the possibility of independently setting (with a very low power consumption) the interconnection state of each connecting element. Integrated multiport interferometers and waveguide meshes provide regular and periodic geometries, formed by replicating unit elements and cells, respectively. In the case of waveguide meshes, the cells can take the form of a square, hexagon, or triangle, among other configurations. Each side of the cell is formed by two integrated waveguides connected by means of a Mach¿Zehnder interferometer or a tunable directional coupler that can be operated by means of an output control signal as a crossbar switch or as a variable coupler with independent power division ratio and phase shift. In this paper, we provide the basic foundations and principles behind the construction of these complex programmable circuits. We also review some practical aspects that limit the programming and scalability of programmable integrated photonics and provide an overview of some of the most salient applications demonstrated so far.European Research Council; Conselleria d'Educació, Investigació, Cultura i Esport; Ministerio de Ciencia, Innovación y Universidades; European Cooperation in Science and Technology; Horizon 2020 Framework Programme.Pérez-López, D.; Gasulla Mestre, I.; Dasmahapatra, P.; Capmany Francoy, J. (2020). Principles, fundamentals, and applications of programmable integrated photonics. Advances in Optics and Photonics. 12(3):709-786. https://doi.org/10.1364/AOP.387155709786123Lyke, J. C., Christodoulou, C. G., Vera, G. A., & Edwards, A. H. (2015). An Introduction to Reconfigurable Systems. Proceedings of the IEEE, 103(3), 291-317. doi:10.1109/jproc.2015.2397832Kaeslin, H. (2008). Digital Integrated Circuit Design. doi:10.1017/cbo9780511805172Trimberger, S. M. (2015). Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology. Proceedings of the IEEE, 103(3), 318-331. doi:10.1109/jproc.2015.2392104Mitola, J. (1995). The software radio architecture. IEEE Communications Magazine, 33(5), 26-38. doi:10.1109/35.393001Nunes, B. A. A., Mendonca, M., Nguyen, X.-N., Obraczka, K., & Turletti, T. (2014). A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks. IEEE Communications Surveys & Tutorials, 16(3), 1617-1634. doi:10.1109/surv.2014.012214.00180Papagianni, C., Leivadeas, A., Papavassiliou, S., Maglaris, V., Cervello-Pastor, C., & Monje, A. (2013). On the optimal allocation of virtual resources in cloud computing networks. IEEE Transactions on Computers, 62(6), 1060-1071. doi:10.1109/tc.2013.31Peruzzo, A., Laing, A., Politi, A., Rudolph, T., & O’Brien, J. L. (2011). Multimode quantum interference of photons in multiport integrated devices. Nature Communications, 2(1). doi:10.1038/ncomms1228Metcalf, B. J., Thomas-Peter, N., Spring, J. B., Kundys, D., Broome, M. A., Humphreys, P. C., … Walmsley, I. A. (2013). Multiphoton quantum interference in a multiport integrated photonic device. Nature Communications, 4(1). doi:10.1038/ncomms2349Miller, D. A. B. (2013). Self-aligning universal beam coupler. Optics Express, 21(5), 6360. doi:10.1364/oe.21.006360Miller, D. A. B. (2013). Self-configuring universal linear optical component [Invited]. Photonics Research, 1(1), 1. doi:10.1364/prj.1.000001Carolan, J., Harrold, C., Sparrow, C., Martín-López, E., Russell, N. J., Silverstone, J. W., … Laing, A. (2015). Universal linear optics. Science, 349(6249), 711-716. doi:10.1126/science.aab3642Harris, N. C., Steinbrecher, G. R., Prabhu, M., Lahini, Y., Mower, J., Bunandar, D., … Englund, D. (2017). Quantum transport simulations in a programmable nanophotonic processor. Nature Photonics, 11(7), 447-452. doi:10.1038/nphoton.2017.95Birth of the programmable optical chip. (2015). Nature Photonics, 10(1), 1-1. doi:10.1038/nphoton.2015.265Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J., & Lowery, A. J. (2015). Programmable photonic signal processor chip for radiofrequency applications. Optica, 2(10), 854. doi:10.1364/optica.2.000854Pérez, D., Gasulla, I., Capmany, J., & Soref, R. A. (2016). Reconfigurable lattice mesh designs for programmable photonic processors. Optics Express, 24(11), 12093. doi:10.1364/oe.24.012093Capmany, J., Gasulla, I., & Pérez, D. (2015). The programmable processor. Nature Photonics, 10(1), 6-8. doi:10.1038/nphoton.2015.254Pérez, D., Gasulla, I., Crudgington, L., Thomson, D. J., Khokhar, A. Z., Li, K., … Capmany, J. (2017). Multipurpose silicon photonics signal processor core. Nature Communications, 8(1). doi:10.1038/s41467-017-00714-1Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S., & Walsmley, I. A. (2016). Optimal design for universal multiport interferometers. Optica, 3(12), 1460. doi:10.1364/optica.3.001460Perez, D., Gasulla, I., Fraile, F. J., Crudgington, L., Thomson, D. J., Khokhar, A. Z., … Capmany, J. (2017). Silicon Photonics Rectangular Universal Interferometer. Laser & Photonics Reviews, 11(6), 1700219. doi:10.1002/lpor.201700219Shen, Y., Harris, N. C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., … Soljačić, M. (2017). Deep learning with coherent nanophotonic circuits. Nature Photonics, 11(7), 441-446. doi:10.1038/nphoton.2017.93Ribeiro, A., Ruocco, A., Vanacker, L., & Bogaerts, W. (2016). Demonstration of a 4 × 4-port universal linear circuit. Optica, 3(12), 1348. doi:10.1364/optica.3.001348Annoni, A., Guglielmi, E., Carminati, M., Ferrari, G., Sampietro, M., Miller, D. A., … Morichetti, F. (2017). Unscrambling light—automatically undoing strong mixing between modes. Light: Science & Applications, 6(12), e17110-e17110. doi:10.1038/lsa.2017.110Perez, D., Gasulla, I., & Capmany, J. (2018). Toward Programmable Microwave Photonics Processors. Journal of Lightwave Technology, 36(2), 519-532. doi:10.1109/jlt.2017.2778741Chen, L., Hall, E., Theogarajan, L., & Bowers, J. (2011). Photonic Switching for Data Center Applications. IEEE Photonics Journal, 3(5), 834-844. doi:10.1109/jphot.2011.2166994Miller, D. A. B. (2017). Meshing optics with applications. Nature Photonics, 11(7), 403-404. doi:10.1038/nphoton.2017.104Thomas-Peter, N., Langford, N. K., Datta, A., Zhang, L., Smith, B. J., Spring, J. B., … Walmsley, I. A. (2011). Integrated photonic sensing. New Journal of Physics, 13(5), 055024. doi:10.1088/1367-2630/13/5/055024Smit, M., Leijtens, X., Ambrosius, H., Bente, E., van der Tol, J., Smalbrugge, B., … van Veldhoven, R. (2014). An introduction to InP-based generic integration technology. Semiconductor Science and Technology, 29(8), 083001. doi:10.1088/0268-1242/29/8/083001Coldren, L. A., Nicholes, S. C., Johansson, L., Ristic, S., Guzzon, R. S., Norberg, E. J., & Krishnamachari, U. (2011). High Performance InP-Based Photonic ICs—A Tutorial. Journal of Lightwave Technology, 29(4), 554-570. doi:10.1109/jlt.2010.2100807Kish, F., Nagarajan, R., Welch, D., Evans, P., Rossi, J., Pleumeekers, J., … Joyner, C. (2013). From Visible Light-Emitting Diodes to Large-Scale III–V Photonic Integrated Circuits. Proceedings of the IEEE, 101(10), 2255-2270. doi:10.1109/jproc.2013.2275018Hochberg, M., & Baehr-Jones, T. (2010). Towards fabless silicon photonics. Nature Photonics, 4(8), 492-494. doi:10.1038/nphoton.2010.172Bogaerts, W., Fiers, M., & Dumon, P. (2014). Design Challenges in Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 20(4), 1-8. doi:10.1109/jstqe.2013.2295882Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151Chrostowski, L., & Hochberg, M. (2015). Silicon Photonics Design. doi:10.1017/cbo9781316084168Heck, M. J. R., Bauters, J. F., Davenport, M. L., Doylend, J. K., Jain, S., Kurczveil, G., … Bowers, J. E. (2013). Hybrid Silicon Photonic Integrated Circuit Technology. IEEE Journal of Selected Topics in Quantum Electronics, 19(4), 6100117-6100117. doi:10.1109/jstqe.2012.2235413Keyvaninia, S., Muneeb, M., Stanković, S., Van Veldhoven, P. J., Van Thourhout, D., & Roelkens, G. (2012). Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Optical Materials Express, 3(1), 35. doi:10.1364/ome.3.000035Heideman, R., Hoekman, M., & Schreuder, E. (2012). TriPleX-Based Integrated Optical Ring Resonators for Lab-on-a-Chip and Environmental Detection. IEEE Journal of Selected Topics in Quantum Electronics, 18(5), 1583-1596. doi:10.1109/jstqe.2012.2188382Roeloffzen, C. G. H., Zhuang, L., Taddei, C., Leinse, A., Heideman, R. G., van Dijk, P. W. L., … Boller, K.-J. (2013). Silicon nitride microwave photonic circuits. Optics Express, 21(19), 22937. doi:10.1364/oe.21.022937Corbett, B., Loi, R., Zhou, W., Liu, D., & Ma, Z. (2017). Transfer print techniques for heterogeneous integration of photonic components. Progress in Quantum Electronics, 52, 1-17. doi:10.1016/j.pquantelec.2017.01.001Van der Tol, J. J. G. M., Jiao, Y., Shen, L., Millan-Mejia, A., Pogoretskii, V., van Engelen, J. P., & Smit, M. K. (2018). Indium Phosphide Integrated Photonics in Membranes. IEEE Journal of Selected Topics in Quantum Electronics, 24(1), 1-9. doi:10.1109/jstqe.2017.2772786Bachmann, M., Besse, P. A., & Melchior, H. (1994). General self-imaging properties in N × N multimode interference couplers including phase relations. Applied Optics, 33(18), 3905. doi:10.1364/ao.33.003905Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474Madsen, C. K., & Zhao, J. H. (1999). Optical Filter Design and Analysis. Wiley Series in Microwave and Optical Engineering. doi:10.1002/0471213756Desurvire, E. (2009). Classical and Quantum Information Theory. doi:10.1017/cbo9780511803758Knill, E., Laflamme, R., & Milburn, G. J. (2001). A scheme for efficient quantum computation with linear optics. Nature, 409(6816), 46-52. doi:10.1038/35051009Capmany, J., & Pérez, D. (2020). Programmable Integrated Photonics. doi:10.1093/oso/9780198844402.001.0001Spagnolo, N., Vitelli, C., Bentivegna, M., Brod, D. J., Crespi, A., Flamini, F., … Sciarrino, F. (2014). Experimental validation of photonic boson sampling. Nature Photonics, 8(8), 615-620. doi:10.1038/nphoton.2014.135Mennea, P. L., Clements, W. R., Smith, D. H., Gates, J. C., Metcalf, B. J., Bannerman, R. H. S., … Smith, P. G. R. (2018). Modular linear optical circuits. Optica, 5(9), 1087. doi:10.1364/optica.5.001087Perez-Lopez, D., Sanchez, E., & Capmany, J. (2018). Programmable True Time Delay Lines Using Integrated Waveguide Meshes. Journal of Lightwave Technology, 36(19), 4591-4601. doi:10.1109/jlt.2018.2831008Pérez-López, D., Gutierrez, A. M., Sánchez, E., DasMahapatra, P., & Capmany, J. (2019). Integrated photonic tunable basic units using dual-drive directional couplers. Optics Express, 27(26), 38071. doi:10.1364/oe.27.038071Jinguji, K., & Kawachi, M. (1995). Synthesis of coherent two-port lattice-form optical delay-line circuit. Journal of Lightwave Technology, 13(1), 73-82. doi:10.1109/50.350643Mookherjea, S., & Yariv, A. (2002). Coupled resonator optical waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 8(3), 448-456. doi:10.1109/jstqe.2002.1016347Heebner, J. E., Chak, P., Pereira, S., Sipe, J. E., & Boyd, R. W. (2004). Distributed and localized feedback in microresonator sequences for linear and nonlinear optics. Journal of the Optical Society of America B, 21(10), 1818. doi:10.1364/josab.21.001818Fandiño, J. S., Muñoz, P., Doménech, D., & Capmany, J. (2016). A monolithic integrated photonic microwave filter. Nature Photonics, 11(2), 124-129. doi:10.1038/nphoton.2016.233Miller, D. A. B. (2012). All linear optical devices are mode converters. Optics Express, 20(21), 23985. doi:10.1364/oe.20.023985Brown, S. D., Francis, R. J., Rose, J., & Vranesic, Z. G. (1992). Field-Programmable Gate Arrays. doi:10.1007/978-1-4615-3572-0Lee, E. K. F., & Gulak, P. G. (1992). Field programmable analogue array based on MOSFET transconductors. Electronics Letters, 28(1), 28-29. doi:10.1049/el:19920017Lee, E. K. F., & Gulak, P. G. (s. f.). A transconductor-based field-programmable analog array. Proceedings ISSCC ’95 - International Solid-State Circuits Conference. doi:10.1109/isscc.1995.535521Pérez, D., Gasulla, I., & Capmany, J. (2018). Field-programmable photonic arrays. Optics Express, 26(21), 27265. doi:10.1364/oe.26.027265Zheng, D., Doménech, J. D., Pan, W., Zou, X., Yan, L., & Pérez, D. (2019). Low-loss broadband 5  ×  5 non-blocking Si3N4 optical switch matrix. Optics Letters, 44(11), 2629. doi:10.1364/ol.44.002629Densmore, A., Janz, S., Ma, R., Schmid, J. H., Xu, D.-X., Delâge, A., … Cheben, P. (2009). Compact and low power thermo-optic switch using folded silicon waveguides. Optics Express, 17(13), 10457. doi:10.1364/oe.17.010457Song, M., Long, C. M., Wu, R., Seo, D., Leaird, D. E., & Weiner, A. M. (2011). Reconfigurable and Tunable Flat-Top Microwave Photonic Filters Utilizing Optical Frequency Combs. IEEE Photonics Technology Letters, 23(21), 1618-1620. doi:10.1109/lpt.2011.2165209Rudé, M., Pello, J., Simpson, R. E., Osmond, J., Roelkens, G., van der Tol, J. J. G. M., & Pruneri, V. (2013). Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials. Applied Physics Letters, 103(14), 141119. doi:10.1063/1.4824714Zheng, J., Khanolkar, A., Xu, P., Colburn, S., Deshmukh, S., Myers, J., … Majumdar, A. (2018). GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Optical Materials Express, 8(6), 1551. doi:10.1364/ome.8.001551Edinger, P., Errando-Herranz, C., & Gylfason, K. B. (2019). Low-Loss MEMS Phase Shifter for Large Scale Reconfigurable Silicon Photonics. 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS). doi:10.1109/memsys.2019.8870616Carroll, L., Lee, J.-S., Scarcella, C., Gradkowski, K., Duperron, M., Lu, H., … O’Brien, P. (2016). Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Applied Sciences, 6(12), 426. doi:10.3390/app6120426Bahadori, M., Gazman, A., Janosik, N., Rumley, S., Zhu, Z., Polster, R., … Bergman, K. (2018). Thermal Rectification of Integrated Microheaters for Microring Resonators in Silicon Photonics Platform. Journal of Lightwave Technology, 36(3), 773-788. doi:10.1109/jlt.2017.2781131Cocorullo, G., Della Corte, F. G., Rendina, I., & Sarro, P. M. (1998). Thermo-optic effect exploitation in silicon microstructures. Sensors and Actuators A: Physical, 71(1-2), 19-26. doi:10.1016/s0924-4247(98)00168-xZecevic, N., Hofbauer, M., & Zimmermann, H. (2015). Integrated Pulsewidth Modulation Control for a Scalable Optical Switch Matrix. IEEE Photonics Journal, 7(6), 1-7. doi:10.1109/jphot.2015.2506153Seok, T. J., Quack, N., Han, S., & Wu, M. C. (2015). 50×50 Digital Silicon Photonic Switches with MEMS-Actuated Adiabatic Couplers. Optical Fiber Communication Conference. doi:10.1364/ofc.2015.m2b.4Zortman, W. A., Trotter, D. C., & Watts, M. R. (2010). Silicon photonics manufacturing. Optics Express, 18(23), 23598. doi:10.1364/oe.18.023598Mower, J., Harris, N. C., Steinbrecher, G. R., Lahini, Y., & Englund, D. (2015). High-fidelity quantum state evolution in imperfect photonic integrated circuits. Physical Review A, 92(3). doi:10.1103/physreva.92.032322Pérez, D., & Capmany, J. (2019). Scalable analysis for arbitrary photonic integrated waveguide meshes. Optica, 6(1), 19. doi:10.1364/optica.6.000019Oton, C. J., Manganelli, C., Bontempi, F., Fournier, M., Fowler, D., & Kopp, C. (2016). Silicon photonic waveguide metrology using Mach-Zehnder interferometers. Optics Express, 24(6), 6265. doi:10.1364/oe.24.006265Chen, X., & Bogaerts, W. (2019). A Graph-based Design and Programming Strategy for Reconfigurable Photonic Circuits. 2019 IEEE Photonics Society Summer Topical Meeting Series (SUM). doi:10.1109/phosst.2019.8795068Zibar, D., Wymeersch, H., & Lyubomirsky, I. (2017). Machine learning under the spotlight. Nature Photonics, 11(12), 749-751. doi:10.1038/s41566-017-0058-3Lopez, D. P. (2020). Programmable Integrated Silicon Photonics Waveguide Meshes: Optimized Designs and Control Algorithms. IEEE Journal of Selected Topics in Quantum Electronics, 26(2), 1-12. doi:10.1109/jstqe.2019.2948048Harris, N. C., Bunandar, D., Pant, M., Steinbrecher, G. R., Mower, J., Prabhu, M., … Englund, D. (2016). Large-scale quantum photonic circuits in silicon. Nanophotonics, 5(3), 456-468. doi:10.1515/nanoph-2015-0146Spring, J. B., Metcalf, B. J., Humphreys, P. C., Kolthammer, W. S., Jin, X.-M., Barbieri, M., … Walmsley, I. A. (2012). Boson Sampling on a Photonic Chip. Science, 339(6121), 798-801. doi:10.1126/science.1231692O’Brien, J. L., Furusawa, A., & Vučković, J. (2009). Photonic quantum technologies. Nature Photonics, 3(12), 687-695. doi:10.1038/nphoton.2009.229Kok, P., Munro, W. J., Nemoto, K., Ralph, T. C., Dowling, J. P., & Milburn, G. J. (2007). Linear optical quantum computing with photonic qubits. Reviews of Modern Physics, 79(1), 135-174. doi:10.1103/revmodphys.79.135Politi, A., Cryan, M. J., Rarity, J. G., Yu, S., & O’Brien, J. L. (2008). Silica-on-Silicon Waveguide Quantum Circuits. Science, 320(5876), 646-649. doi:10.1126/science.1155441Politi, A., Matthews, J., Thompson, M. G., & O’Brien, J. L. (2009). Integrated Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 15(6), 1673-1684. doi:10.1109/jstqe.2009.2026060Thompson, M. G., Politi, A., Matthews, J. C. F., & O’Brien, J. L. (2011). Integrated waveguide circuits for optical quantum computing. IET Circuits, Devices & Systems, 5(2), 94. doi:10.1049/iet-cds.2010.0108Silverstone, J. W., Bonneau, D., O’Brien, J. L., & Thompson, M. G. (2016). Silicon Quantum Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 22(6), 390-402. doi:10.1109/jstqe.2016.2573218Poot, M., Schuck, C., Ma, X., Guo, X., & Tang, H. X. (2016). Design and characterization of integrated components for SiN photonic quantum circuits. Optics Express, 24(7), 6843. doi:10.1364/oe.24.006843Saleh, M. F., Di Giuseppe, G., Saleh, B. E. A., & Teich, M. C. (2010). Modal and polarization qubits in Ti:LiNbO_3 photonic circuits for a universal quantum logic gate. Optics Express, 18(19), 20475. doi:10.1364/oe.18.020475Harris, N. C., Carolan, J., Bunandar, D., Prabhu, M., Hochberg, M., Baehr-Jones, T., … Englund, D. (2018). Linear programmable nanophotonic processors. Optica, 5(12), 1623. doi:10.1364/optica.5.001623Qiang, X., Zhou, X., Wang, J., Wilkes, C. M., Loke, T., O’Gara, S., … Matthews, J. C. F. (2018). Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nature Photonics, 12(9), 534-539. doi:10.1038/s41566-018-0236-yLee, B. G., & Dupuis, N. (2019). Silicon Photonic Switch Fabrics: Technology and Architecture. Journal of Lightwave Technology, 37(1), 6-20. doi:10.1109/jlt.2018.2876828Cheng, Q., Rumley, S., Bahadori, M., & Bergman, K. (2018). Photonic switching in high performance datacenters [Invited]. Optics Express, 26(12), 16022. doi:10.1364/oe.26.016022Wonfor, A., Wang, H., Penty, R. V., & White, I. H. (2011). Large Port Count High-Speed Optical Switch Fabric for Use Within Datacenters [Invited]. Journal of Optical Communications and Networking, 3(8), A32. doi:10.1364/jocn.3.000a32Hamamoto, K., Anan, T., Komatsu, K., Sugimoto, M., & Mito, I. (1992). First 8×8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers. Electronics Letters, 28(5), 441. doi:10.1049/el:19920278Van Campenhout, J., Green, W. M., Assefa, S., & Vlasov, Y. A. (2009). Low-power, 2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks. Optics Express, 17(26), 24020. doi:10.1364/oe.17.024020Dupuis, N., Lee, B. G., Rylyakov, A. V., Kuchta, D. M., Baks, C. W., Orcutt, J. S., … Schow, C. L. (2015). D

    VLSI implementation of a multi-mode turbo/LDPC decoder architecture

    Get PDF
    Flexible and reconfigurable architectures have gained wide popularity in the communications field. In particular, reconfigurable architectures for the physical layer are an attractive solution not only to switch among different coding modes but also to achieve interoperability. This work concentrates on the design of a reconfigurable architecture for both turbo and LDPC codes decoding. The novel contributions of this paper are: i) tackling the reconfiguration issue introducing a formal and systematic treatment that, to the best of our knowledge, was not previously addressed; ii) proposing a reconfigurable NoCbased turbo/LDPC decoder architecture and showing that wide flexibility can be achieved with a small complexity overhead. Obtained results show that dynamic switching between most of considered communication standards is possible without pausing the decoding activity. Moreover, post-layout results show that tailoring the proposed architecture to the WiMAX standard leads to an area occupation of 2.75 mm2 and a power consumption of 101.5 mW in the worst case

    Multipurpose Programmable Integrated Photonics: Principles and Applications

    Full text link
    [ES] En los últimos años, la fotónica integrada programable ha evolucionado desde considerarse un paradigma nuevo y prometedor para implementar la fotónica a una escala más amplia hacia convertirse una realidad sólida y revolucionaria, capturando la atención de numerosos grupos de investigación e industrias. Basada en el mismo fundamento teórico que las matrices de puertas lógicas programables en campo (o FPGAs, en inglés), esta tecnología se sustenta en la disposición bidimensional de bloques unitarios de lógica programable (en inglés: PUCs) que -mediante una programación adecuada de sus actuadores de fase- pueden implementar una gran variedad de funcionalidades que pueden ser elaboradas para operaciones básicas o más complejas en muchos campos de aplicación como la inteligencia artificial, el aprendizaje profundo, los sistemas de información cuántica, las telecomunicaciones 5/6-G, en redes de conmutación, formando interconexiones en centros de datos, en la aceleración de hardware o en sistemas de detección, entre otros. En este trabajo, nos dedicaremos a explorar varias aplicaciones software de estos procesadores en diferentes diseños de chips. Exploraremos diferentes enfoques de vanguardia basados en la optimización computacional y la teoría de grafos para controlar y configurar con precisión estos dispositivos. Uno de estos enfoques, la autoconfiguración, consiste en la síntesis automática de circuitos ópticos -incluso en presencia de efectos parasitarios como distribuciones de pérdidas no uniformes a lo largo del diseño hardware, o bajo interferencias ópticas y eléctricas- sin conocimiento previo sobre el estado del dispositivo. Hay ocasiones, sin embargo, en las que el acceso a esta información puede ser útil. Las herramientas de autocalibración y autocaracterización nos permiten realizar una comprobación rápida del estado de nuestro procesador fotónico, lo que nos permite extraer información útil como la corriente eléctrica que suministrar a cada actuador de fase para cambiar el estado de su PUC correspondiente, o las pérdidas de inserción de cada unidad programable y de las interconexiones ópticas que rodean a la estructura. Estos mecanismos no solo nos permiten identificar rápidamente cualquier PUC o región del chip defectuosa en nuestro diseño, sino que también revelan otra alternativa para programar circuitos fotónicos en nuestro diseño a partir de valores de corriente predefinidos. Estas estrategias constituyen un paso significativo para aprovechar todo el potencial de estos dispositivos. Proporcionan soluciones para manejar cientos de variables y gestionar simultáneamente múltiples acciones de configuración, una de las principales limitaciones que impiden que esta tecnología se extienda y se convierta en disruptiva en los próximos años.[CA] En els darrers anys, la fotònica integrada programable ha evolucionat des de considerarse un paradigma nou i prometedor per implementar la fotònica a una escala més ampla cap a convertir-se en una realitat sòlida i revolucionària, capturant l'atenció de nombrosos grups d'investigaciò i indústries. Basada en el mateix fonament teòric que les matrius de portes lògiques programable en camp (o FPGAs, en anglès), aquesta tecnología es sustenta en la disposición bidimensional de blocs units lògics programables (en anglès: PUCs) que -mitjançant una programación adequada dels seus actuadors de fase- poden implementar una gran varietat de funcionalitats que poden ser elaborades per a operacions bàsiques o més complexes en molts camps d'aplicació com la intel·ligència artificial, l'aprenentatge profund, els sistemes d'informació quàntica, les telecomunicacions 5/6-G, en xarxes de comutació, formant interconnexions en centres de dades, en l'acceleració de hardware o en sistemes de detecció, entre d'altres. En aquest treball, ens dedicarem a explorar diverses capatitats de programari d'aquests processadors en diferents dissenys de xips. Explorem diferents enfocaments de vanguardia basats en l'optimització computacional i la teoría de grafs per controlar i configurar amb precisió aquests dispositius. Un d'aquests enfocaments, l'autoconfiguració, tracta de la síntesi automática de circuits òptics -fins i tot en presencia d'efectes parasitaris com ara pèrdues no uniformes o crosstalk òptic i elèctric- sense cap coneixement previ sobre l'estat del dispositiu. Tanmateix, hi ha ocasions en les quals l'accés a aquesta información pot ser útil. Les eines d'autocalibració i autocaracterització ens permeten realizar una comprovació ràpida de l'estat del nostre procesador fotònic, el que ens permet obtener informació útil com la corrent eléctrica necessària per alimentar cada actuador de fase per canviar l'estat del seu PUC corresponent o la pèrdua d'inserció de cada unitat programable i de les interconnexions òptiques que envolten l'estructura. Aquests mecanisms no només ens permeten identificar ràpidament qualsevol PUC o área del xip defectuosa en el nostre disseny , sinó que també ens mostren una altra alternativa per programar circuits fotònics en el nostre disseny a partir de valors de corrent predefinits. Aquestes estratègies constitueixen un pas gegant per a aprofitar tot el potencial d'aquests dispositius. Proporcionen solucions per a gestionar centenars de variables i alhora administrar múltiples accions de configuració, una de les principals limitacions que impideixen que aquesta tecnología esdevingui disruptiva en els pròxims anys.[EN] In recent years, programmable integrated photonics (PIP) has evolved from a promising, new paradigm to deploy photonics to a larger scale to a solid, revolutionary reality, bringing up the attention of numerous research and industry players. Based on the same theoretical foundations than field-programmable gate arrays (FPGAs), this technology relies on common, two-dimensional integrated optical hardware configurations based on the interconnection of programmable unit cells (PUCs), which -by suitable programming of their phase actuators- can implement a variety of functionalities that can be elaborated for basic or more complex operation in many application fields, such as artificial intelligence, deep learning, quantum information systems, 5/6-G telecommunications, switching, data center interconnections, hardware acceleration and sensing, amongst others. In this work, we will dedicate ourselves to explore several software capabilities of these processors under different chip designs. We explore different cutting-edge approaches based on computational optimization and graph theory to precisely control and configure these devices. One of these, self-configuration, deals with the automated synthesis of optical circuit configurations -even in presence of parasitic effects such as nonuniform losses, optical and electrical crosstalk- without any need for prior knowledge about hardware state. There are occasions, though, in which accessing to this information may be of use. Self-calibration and self-characterization tools allow us to perform a quick check to our photonic processor's status, allowing us to retrieve useful pieces of information such as the electrical current needed to supply to each phase actuator to change its corresponding PUC state arbitrarily or the insertion loss of every unit cell and optical interconnection surrounding the structure. These mechanisms not only allow us to quickly identify any malfunctioning PUCs or chip areas in our design, but also reveal another alternative to program photonic circuits in our design from current pre-sets. These strategies constitute a gigantic step to unleash all the potential of these devices. They provide solutions to handle with hundreds of variables and simultaneously manage multiple configuration actions, one of the main limitations that prevent this technology to scale up and become disruptive in the years to come.López Hernández, A. (2023). Multipurpose Programmable Integrated Photonics: Principles and Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19686

    High-performance and hardware-aware computing: proceedings of the second International Workshop on New Frontiers in High-performance and Hardware-aware Computing (HipHaC\u2711), San Antonio, Texas, USA, February 2011 ; (in conjunction with HPCA-17)

    Get PDF
    High-performance system architectures are increasingly exploiting heterogeneity. The HipHaC workshop aims at combining new aspects of parallel, heterogeneous, and reconfigurable microprocessor technologies with concepts of high-performance computing and, particularly, numerical solution methods. Compute- and memory-intensive applications can only benefit from the full hardware potential if all features on all levels are taken into account in a holistic approach

    A Field Programmable Gate Array Architecture for Two-Dimensional Partial Reconfiguration

    Get PDF
    Reconfigurable machines can accelerate many applications by adapting to their needs through hardware reconfiguration. Partial reconfiguration allows the reconfiguration of a portion of a chip while the rest of the chip is busy working on tasks. Operating system models have been proposed for partially reconfigurable machines to handle the scheduling and placement of tasks. They are called OS4RC in this dissertation. The main goal of this research is to address some problems that come from the gap between OS4RC and existing chip architectures and the gap between OS4RC models and practical applications. Some existing OS4RC models are based on an impractical assumption that there is no data exchange channel between IP (Intellectual Property) circuits residing on a Field Programmable Gate Array (FPGA) chip and between an IP circuit and FPGA I/O pins. For models that do not have such an assumption, their inter-IP communication channels have severe drawbacks. Those channels do not work well with 2-D partial reconfiguration. They are not suitable for intensive data stream processing. And frequently they are very complicated to design and very expensive. To address these problems, a new chip architecture that can better support inter-IP and IP-I/O communication is proposed and a corresponding OS4RC kernel is then specified. The proposed FPGA architecture is based on an array of clusters of configurable logic blocks, with each cluster serving as a partial reconfiguration unit, and a mesh of segmented buses that provides inter-IP and IP-I/O communication channels. The proposed OS4RC kernel takes care of the scheduling, placement, and routing of circuits under the constraints of the proposed architecture. Features of the new architecture in turns reduce the kernel execution times and enable the runtime scheduling, placement and routing. The area cost and the configuration memory size of the new chip architecture are calculated and analyzed. And the efficiency of the OS4RC kernel is evaluated via simulation using three different task models

    Secure Network-on-Chip Against Black Hole and Tampering Attacks

    Get PDF
    The Network-on-Chip (NoC) has become the communication heart of Multiprocessors-System-on-Chip (MPSoC). Therefore, it has been subject to a plethora of security threats to degrade the system performance or steal sensitive information. Due to the globalization of the modern semiconductor industry, many different parties take part in the hardware design of the system. As a result, the NoC could be infected with a malicious circuit, known as a Hardware Trojan (HT), to leave a back door for security breach purposes. HTs are smartly designed to be too small to be uncovered by offline circuit-level testing, so the system requires an online monitoring to detect and prevent the HT in runtime. This dissertation focuses on HTs inside the router of a NoC designed by a third party. It explores two HT-based threat models for the MPSoC, where the NoC experiences packet-loss and packet-tampering once the HT in the infected router is activated and is in the attacking state. Extensive experiments for each proposed architecture were conducted using a cycle-accurate simulator to demonstrate its effectiveness on the performance of the NoC-based system. The first threat model is the Black Hole Router (BHR) attack, where it silently discards the packets that are passing through without further announcement. The effect of the BHR is presented and analyzed to show the potency of the attack on a NoC-based system. A countermeasure protocol is proposed to detect the BHR at runtime and counteract the deliberate packet-dropping attack with a 26.9% area overhead, an average 21.31% performance overhead and a 22% energy consumption overhead. The protocol is extended to provide an efficient and power-gated scheme to enhance the NoC throughput and reduce the energy consumption by using end-to-end (e2e) approach. The power-gated e2e technique locates the BHR and avoids it with a 1% performance overhead and a 2% energy consumption overhead. The second threat model is a packet-integrity attack, where the HT tampers with the packet to apply a denial-of-service attack, steal sensitive information, gain unauthorized access, or misroute the packet to an unintended node. An authentic and secure NoC platform is proposed to detect and countermeasure the packet-tampering attack to maintain data-integrity and authenticity while keeping its secrecy with a 24.21% area overhead. The proposed NoC architecture is not only able to detect the attack, but also locates the infected router and isolates it from the network

    Flexible LDPC Decoder Architectures

    Get PDF
    Flexible channel decoding is getting significance with the increase in number of wireless standards and modes within a standard. A flexible channel decoder is a solution providing interstandard and intrastandard support without change in hardware. However, the design of efficient implementation of flexible low-density parity-check (LDPC) code decoders satisfying area, speed, and power constraints is a challenging task and still requires considerable research effort. This paper provides an overview of state-of-the-art in the design of flexible LDPC decoders. The published solutions are evaluated at two levels of architectural design: the processing element (PE) and the interconnection structure. A qualitative and quantitative analysis of different design choices is carried out, and comparison is provided in terms of achieved flexibility, throughput, decoding efficiency, and area (power) consumption
    corecore