154,841 research outputs found

    Practical 3D frame field generation

    Get PDF
    International audienceFigure 1: Our algorithm produces smooth frame fields in volumes. Frames (a) are represented by spherical harmonic functions (b), attached to each vertex of a tetrahedral mesh. Streamlines and singularities of the field are shown in yellow and red, respectively. Abstract Given a tetrahedral mesh, the algorithm described in this article produces a smooth 3D frame field, i.e. a set of three orthogonal directions associated with each vertex of the input mesh. The field varies smoothly inside the volume, and matches the normals of the volume boundary. Such a 3D frame field is a key component for some hexahedral meshing algorithms, where it is used to steer the placement of the generated elements. We improve the state-of-the art in terms of quality, efficiency and reproducibility. Our main contribution is a non-trivial extension in 3D of the existing least-squares approach used for optimizing a 2D frame field. Our algorithm is inspired by the method proposed by Huang et al. [2011], improved with an initialization that directly enforces boundary conditions. Our initialization alone is a fast and easy way to generate frames fields that are suitable for remeshing applications. For better robustness and quality, the field can be further optimized using nonlinear optimization as in Li et al [2012]. We make the remark that sampling the field on vertices instead of tetrahedra significantly improves both performance and quality

    Object-based 2D-to-3D video conversion for effective stereoscopic content generation in 3D-TV applications

    Get PDF
    Three-dimensional television (3D-TV) has gained increasing popularity in the broadcasting domain, as it enables enhanced viewing experiences in comparison to conventional two-dimensional (2D) TV. However, its application has been constrained due to the lack of essential contents, i.e., stereoscopic videos. To alleviate such content shortage, an economical and practical solution is to reuse the huge media resources that are available in monoscopic 2D and convert them to stereoscopic 3D. Although stereoscopic video can be generated from monoscopic sequences using depth measurements extracted from cues like focus blur, motion and size, the quality of the resulting video may be poor as such measurements are usually arbitrarily defined and appear inconsistent with the real scenes. To help solve this problem, a novel method for object-based stereoscopic video generation is proposed which features i) optical-flow based occlusion reasoning in determining depth ordinal, ii) object segmentation using improved region-growing from masks of determined depth layers, and iii) a hybrid depth estimation scheme using content-based matching (inside a small library of true stereo image pairs) and depth-ordinal based regularization. Comprehensive experiments have validated the effectiveness of our proposed 2D-to-3D conversion method in generating stereoscopic videos of consistent depth measurements for 3D-TV applications

    Representing three-dimensional cross fields using 4th order tensors

    Full text link
    This paper presents a new way of describing cross fields based on fourth order tensors. We prove that the new formulation is forming a linear space in R9\mathbb{R}^9. The algebraic structure of the tensors and their projections on \mbox{SO}(3) are presented. The relationship of the new formulation with spherical harmonics is exposed. This paper is quite theoretical. Due to pages limitation, few practical aspects related to the computations of cross fields are exposed. Nevetheless, a global smoothing algorithm is briefly presented and computation of cross fields are finally depicted

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Modeling laser wakefield accelerators in a Lorentz boosted frame

    Full text link
    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference \cite{VayPRL07} is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high-frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing the frame of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively
    • …
    corecore