27 research outputs found

    Practical, Anonymous, and Publicly Linkable Universally-Composable Reputation Systems

    Get PDF
    We consider reputation systems in the Universal Composability Framework where users can anonymously rate each others products that they purchased previously. To obtain trustworthy, reliable, and honest ratings, users are allowed to rate products only once. Everybody is able to detect users that rate products multiple times. In this paper we present an ideal functionality for such reputation systems and give an efficient realization that is usable in practical applications

    Anonymity and Rewards in Peer Rating Systems

    Get PDF
    When peers rate each other, they may choose to rate inaccurately in order to boost their own reputation or unfairly lower another’s. This could be successfully mitigated by having a reputation server incentivise accurate ratings with a reward. However, assigning rewards becomes a challenge when ratings are anonymous, since the reputation server cannot tell which peers to reward for rating accurately. To address this, we propose an anonymous peer rating system in which users can be rewarded for accurate ratings, and we formally define its model and security requirements. In our system ratings are rewarded in batches, so that users claiming their rewards only reveal they authored one in this batch of ratings. To ensure the anonymity set of rewarded users is not reduced, we also split the reputation server into two entities, the Rewarder, who knows which ratings are rewarded, and the Reputation Holder, who knows which users were rewarded. We give a provably secure construction satisfying all the security properties required. For our construction we use a modification of a Direct Anonymous Attestation scheme to ensure that peers can prove their own reputation when rating others, and that multiple feedback on the same subject can be detected. We then use Linkable Ring Signatures to enable peers to be rewarded for their accurate ratings, while still ensuring that ratings are anonymous. Our work results in a system which allows for accurate ratings to be rewarded, whilst still providing anonymity of ratings with respect to the central entities managing the system

    Reputation Schemes for Pervasive Social Networks with Anonymity

    Get PDF

    BUSINESS REPUTATION SYSTEMS BASED ON BLOCKCHAIN TECHNOLOGY—A RISKY ADVANCE

    Get PDF
    Reputation is indispensable for online business since it supports customers in their buying decisions and allows sellers to justify premium prices. While IS research has investigated reputation systems mainly as review systems on online platforms for business-to-consumer (B2C) transactions, no proper solutions have been developed for business-to-business (B2B) transactions yet. We use blockchain technology to propose a new class of reputation systems that apply ratings as voluntary bonus payments: Before a transaction is performed, customers commit to pay a bonus that is granted if a service provider has performed a service properly. As opposed to rival reputation systems that build on cumulated ratings or reviews, our system enables monetized reputation mechanisms that are inextricably linked with online transactions. We expect this system class to provide more trustworthy ratings, which might reduce agency costs and serve quality providers to establish a reputation towards new customers, building on second-order trust

    Anonymous Point Collection - Improved Models and Security Definitions

    Get PDF
    This work is a comprehensive, formal treatment of anonymous point collection. The proposed definition does not only provide a strong notion of security and privacy, but also covers features which are important for practical use. An efficient realization is presented and proven to fulfill the proposed definition. The resulting building block is the first one that allows for anonymous two-way transactions, has semi-offline capabilities, yields constant storage size, and is provably secure

    Variants of Group Signatures and Their Applications

    Get PDF
    corecore