32 research outputs found

    Powerset residuated algebras

    Get PDF
    We present an algebraic approach to canonical embeddings of arbitrary residuated algebras into powerset residuated algebras. We propose some construction of powerset residuated algebras and prove a representation theorem for symmetric residuated algebras

    Vector spaces as Kripke frames

    Get PDF
    In recent years, the compositional distributional approach in computational linguistics has opened the way for an integration of the \emph{lexical} aspects of meaning into Lambek's type-logical grammar program. This approach is based on the observation that a sound semantics for the associative, commutative and unital Lambek calculus can be based on vector spaces by interpreting fusion as the tensor product of vector spaces. In this paper, we build on this observation and extend it to a `vector space semantics' for the \emph{general} Lambek calculus, based on \emph{algebras over a field} K\mathbb{K} (or K\mathbb{K}-algebras), i.e. vector spaces endowed with a bilinear binary product. Such structures are well known in algebraic geometry and algebraic topology, since they are important instances of Lie algebras and Hopf algebras. Applying results and insights from duality and representation theory for the algebraic semantics of nonclassical logics, we regard K\mathbb{K}-algebras as `Kripke frames' the complex algebras of which are complete residuated lattices. This perspective makes it possible to establish a systematic connection between vector space semantics and the standard Routley-Meyer semantics of (modal) substructural logics

    Coalgebraic completeness-via-canonicity for distributive substructural logics

    Get PDF
    We prove strong completeness of a range of substructural logics with respect to a natural poset-based relational semantics using a coalgebraic version of completeness-via-canonicity. By formalizing the problem in the language of coalgebraic logics, we develop a modular theory which covers a wide variety of different logics under a single framework, and lends itself to further extensions. Moreover, we believe that the coalgebraic framework provides a systematic and principled way to study the relationship between resource models on the semantics side, and substructural logics on the syntactic side.Comment: 36 page

    Distributive Residuated Frames and Generalized Bunched Implication Algebras

    Get PDF
    We show that all extensions of the (non-associative) Gentzen system for distributive full Lambek calculus by simple structural rules have the cut elimination property. Also, extensions by such rules that do not increase complexity have the finite model property, hence many subvarieties of the variety of distributive residuated lattices have decidable equational theories. For some other extensions, we prove the finite embeddability property, which implies the decidability of the universal theory, and we show that our results also apply to generalized bunched implication algebras. Our analysis is conducted in the general setting of residuated frames

    Semantic cut elimination for the logic of bunched implications, formalized in Coq

    Get PDF
    The logic of bunched implications (BI) is a substructural logic that forms the backbone of separation logic, the much studied logic for reasoning about heap-manipulating programs. Although the proof theory and metatheory of BI are mathematically involved, the formalization of important metatheoretical results is still incipient. In this paper we present a self-contained formalized, in the Coq proof assistant, proof of a central metatheoretical property of BI: cut elimination for its sequent calculus. The presented proof is *semantic*, in the sense that is obtained by interpreting sequents in a particular "universal" model. This results in a more modular and elegant proof than a standard Gentzen-style cut elimination argument, which can be subtle and error-prone in manual proofs for BI. In particular, our semantic approach avoids unnecessary inversions on proof derivations, or the uses of cut reductions and the multi-cut rule. Besides modular, our approach is also robust: we demonstrate how our method scales, with minor modifications, to (i) an extension of BI with an arbitrary set of \emph{simple structural rules}, and (ii) an extension with an S4-like â–¡\Box modality.Comment: 15 pages, to appear in CPP 202

    Completeness via Canonicity for Distributive Substructural Logics: A Coalgebraic Perspective

    Get PDF
    We prove strong completeness of a range of substructural logics with respect to their relational semantics by completeness-via-canonicity. Specifically, we use the topological theory of canonical (in) equations in distributive lattice expansions to show that distributive substructural logics are strongly complete with respect to their relational semantics. By formalizing the problem in the language of coalgebraic logics, we develop a modular theory which covers a wide variety of different logics under a single framework, and lends itself to further extensions
    corecore