16 research outputs found

    Identities from representation theory

    Full text link
    We give a new Jacobi--Trudi-type formula for characters of finite-dimensional irreducible representations in type CnC_n using characters of the fundamental representations and non-intersecting lattice paths. We give equivalent determinant formulas for the decomposition multiplicities for tensor powers of the spin representation in type BnB_n and the exterior representation in type CnC_n. This gives a combinatorial proof of an identity of Katz and equates such a multiplicity with the dimension of an irreducible representation in type CnC_n. By taking certain specializations, we obtain identities for qq-Catalan triangle numbers, the q,tq,t-Catalan number of Stump, qq-triangle versions of Motzkin and Riordan numbers, and generalizations of Touchard's identity. We use (spin) rigid tableaux and crystal base theory to show some formulas relating Catalan, Motzkin, and Riordan triangle numbers.Comment: 68 pages, 8 figure

    Simulating fermionic systems on classical and quantum computing devices

    Get PDF
    This thesis presents a theoretical study of topics related to the simulation of quantum mechanical systems on classical and quantum computers. A large part of this work focuses on strongly interacting fermionic systems, more precisely, the behavior of electrons in presence of strong magnetic fields. We show how the energy spectrum of a Hamiltonian describing the fractional quantum Hall effect can be computed on a quantum computer and derive a closed form for the Hamiltonian coefficients in second quantization. We then discuss a mean-field method and a multi-reference state approach that allow for an efficient classical computation and an efficient initial state preparation on a quantum computer. The second part of the thesis presents a detailed description on how long-range interacting fermionic systems can be simulated on classical computers using a variational method, introduce an Ansatz which could potentially simplify numerical simulations and give an explicit quantum circuit that shows how the variational state can be used as an initial state and how it can implemented on a quantum computer. In the last part, two novel protocols are presented that generate a variety of prominent many-body operators from two-body interactions and show how these protocols improve over previous construction schemes for a number of important examples.Diese Arbeit behandelt verschiedene zentrale Probleme theoretischer Natur, welche im Rahmen der Simulation quantenmechanischer Systeme auf klassischen und Quantencomputern auftreten. Ein Großteil dieser Arbeit beschäftigt sich mit stark wechselwirkendenden fermionischen Systemen, genauer gesagt, dem Verhalten von Elektronen innerhalb eines starken Magnetfelds. Es wird dargelegt, wie das Energiespektrum des Quanten- Hall-Effekt-Hamiltonoperators auf einem Quantencomputer berechnet werden kann, und es werden geschlossene Ausdrücke für dessen Hamilton-Koeffizienten in zweiter Quantisierung hergeleitet. Anschließend werden sowohl ein Molekularfeld- als auch ein Multi- Referenz-Ansatz diskutiert, welche eine effiziente Berechnung auf klassischen Rechnern zulassen sowie eine effiziente Implementierung auf Quantencomputern ermöglichen. Der zweite Teil dieser Arbeit erläutert, wie man langreichweitige, wechselwirkende fermionische Systeme mit Hilfe einer neuen Variationsmethode, welche über die Molekularfeldnäherung hinaus geht, auf einem klassischen Computer simulieren kann. Es wird darüber hinaus ein alternativer Ansatz vorgestellt, der Teile dieser Variationsmethode vereinfachen könnte, und gezeigt, wie sich der Ansatz auf einem Quantencomputer realisieren lässt. Im letzten Teil werden zwei neue Methoden vorgestellt, welche es ermöglichen, eine Reihe wichtiger Vielteilchen-Operatoren aus Zweiteilchen-Wechselwirkungen zu erzeugen. Beide Methoden werden durch eine Vielzahl an wichtigen Beispielen veranschaulicht

    Subject Index Volumes 1–200

    Get PDF

    Structure Constants in N=4\mathcal{N}=4 SYM at Finite Coupling as Worldsheet gg-Function

    Full text link
    We develop a novel nonperturbative approach to a class of three-point functions in planar N=4\mathcal{N}=4 SYM based on Thermodynamic Bethe Ansatz (TBA). More specifically, we study three-point functions of a non-BPS single-trace operator and two determinant operators dual to maximal Giant Graviton D-branes in AdS5Ă—_5\timesS5^{5}. They correspond to disk one-point functions on the worldsheet and admit a simpler and more powerful integrability description than the standard single-trace three-point functions. We first introduce two new methods to efficiently compute such correlators at weak coupling; one based on large NN collective fields, which provides an example of open-closed-open duality discussed by Gopakumar, and the other based on combinatorics. The results so obtained exhibit a simple determinant structure and indicate that the correlator can be interpreted as a generalization of gg-functions in 2d QFT; an overlap between an integrable boundary state and a state corresponding to the single-trace operator. We then determine the boundary state at finite coupling using the symmetry, the crossing equation and the boundary Yang-Baxter equation. With the resulting boundary state, we derive the ground-state gg-function based on TBA and conjecture its generalization to other states. This is the first fully nonperturbative proposal for the structure constants of operators of finite length. The results are tested extensively at weak and strong couplings. Finally, we point out that determinant operators can provide better probes of sub-AdS locality than single-trace operators and discuss possible applications.Comment: 224 pages; v3 new results, appendices, and references adde
    corecore