16,519 research outputs found

    MIMO Transceivers With Decision Feedback and Bit Loading: Theory and Optimization

    Get PDF
    This paper considers MIMO transceivers with linear precoders and decision feedback equalizers (DFEs), with bit allocation at the transmitter. Zero-forcing (ZF) is assumed. Considered first is the minimization of transmitted power, for a given total bit rate and a specified set of error probabilities for the symbol streams. The precoder and DFE matrices are optimized jointly with bit allocation. It is shown that the generalized triangular decomposition (GTD) introduced by Jiang, Li, and Hager offers an optimal family of solutions. The optimal linear transceiver (which has a linear equalizer rather than a DFE) with optimal bit allocation is a member of this family. This shows formally that, under optimal bit allocation, linear and DFE transceivers achieve the same minimum power. The DFE transceiver using the geometric mean decomposition (GMD) is another member of this optimal family, and is such that optimal bit allocation yields identical bits for all symbol streams—no bit allocation is necessary—when the specified error probabilities are identical for all streams. The QR-based system used in VBLAST is yet another member of the optimal family and is particularly well-suited when limited feedback is allowed from receiver to transmitter. Two other optimization problems are then considered: a) minimization of power for specified set of bit rates and error probabilities (the QoS problem), and b) maximization of bit rate for fixed set of error probabilities and power. It is shown in both cases that the GTD yields an optimal family of solutions

    A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects

    Get PDF
    Interconnect architectures which leverage high-bandwidth optical channels offer a promising solution to address the increasing chip-to-chip I/O bandwidth demands. This paper describes a dense, high-speed, and low-power CMOS optical interconnect transceiver architecture. Vertical-cavity surface-emitting laser (VCSEL) data rate is extended for a given average current and corresponding reliability level with a four-tap current summing FIR transmitter. A low-voltage integrating and double-sampling optical receiver front-end provides adequate sensitivity in a power efficient manner by avoiding linear high-gain elements common in conventional transimpedance-amplifier (TIA) receivers. Clock recovery is performed with a dual-loop architecture which employs baud-rate phase detection and feedback interpolation to achieve reduced power consumption, while high-precision phase spacing is ensured at both the transmitter and receiver through adjustable delay clock buffers. A prototype chip fabricated in 1 V 90 nm CMOS achieves 16 Gb/s operation while consuming 129 mW and occupying 0.105 mm^2

    Precoded FIR and Redundant V-BLAST Systems for Frequency-Selective MIMO Channels

    Get PDF
    The vertical Bell labs layered space-time (V-BLAST) system is a multi-input multioutput (MIMO) system designed to achieve good multiplexing gain. In recent literature, a precoder, which exploits channel information, has been added in the V-BLAST transmitter. This precoder forces each symbol stream to have an identical mean square error (MSE). It can be viewed as an alternative to the bit-loading method. In this paper, this precoded V-BLAST system is extended to the case of frequency-selective MIMO channels. Both the FIR and redundant types of transceivers, which use cyclic-prefixing and zero-padding, are considered. A fast algorithm for computing a cyclic-prefixing-based precoded V-BLAST transceiver is developed. Experiments show that the proposed methods with redundancy have better performance than the SVD-based system with optimal powerloading and bit loading for frequency-selective MIMO channels. The gain comes from the fact that the MSE-equalizing precoder has better bit-error rate performance than the optimal bitloading method

    Energy Detection UWB Receiver Design using a Multi-resolution VHDL-AMS Description

    Get PDF
    Ultra Wide Band (UWB) impulse radio systems are appealing for location-aware applications. There is a growing interest in the design of UWB transceivers with reduced complexity and power consumption. Non-coherent approaches for the design of the receiver based on energy detection schemes seem suitable to this aim and have been adopted in the project the preliminary results of which are reported in this paper. The objective is the design of a UWB receiver with a top-down methodology, starting from Matlab-like models and refining the description down to the final transistor level. This goal will be achieved with an integrated use of VHDL for the digital blocks and VHDL-AMS for the mixed-signal and analog circuits. Coherent results are obtained using VHDL-AMS and Matlab. However, the CPU time cost strongly depends on the description used in the VHDL-AMS models. In order to show the functionality of the UWB architecture, the receiver most critical functions are simulated showing results in good agreement with the expectations

    MIMO Transceiver Optimization With Linear Constraints on Transmitted Signal Covariance Components

    Get PDF
    This correspondence revisits the joint transceiver optimization problem for multiple-input multiple-output (MIMO) channels. The linear transceiver as well as the transceiver with linear precoding and decision feedback equalization are considered. For both types of transceivers, in addition to the usual total power constraint, an individual power constraint on each antenna element is also imposed. A number of objective functions including the average bit error rate, are considered for both of the above systems under the generalized power constraint. It is shown that for both types of systems the optimization problem can be solved by first solving a class of MMSE problems (AM-MMSE or GM-MMSE depending on the type of transceiver), and then using majorization theory. The first step, under the generalized power constraint, can be formulated as a semidefinite program (SDP) for both types of transceivers, and can be solved efficiently by convex optimization tools. The second step is addressed by using results from majorization theory. The framework developed here is general enough to add any finite number of linear constraints to the covariance matrix of the input
    corecore