1,533 research outputs found

    Compressive Imaging Using RIP-Compliant CMOS Imager Architecture and Landweber Reconstruction

    Get PDF
    In this paper, we present a new image sensor architecture for fast and accurate compressive sensing (CS) of natural images. Measurement matrices usually employed in CS CMOS image sensors are recursive pseudo-random binary matrices. We have proved that the restricted isometry property of these matrices is limited by a low sparsity constant. The quality of these matrices is also affected by the non-idealities of pseudo-random number generators (PRNG). To overcome these limitations, we propose a hardware-friendly pseudo-random ternary measurement matrix generated on-chip by means of class III elementary cellular automata (ECA). These ECA present a chaotic behavior that emulates random CS measurement matrices better than other PRNG. We have combined this new architecture with a block-based CS smoothed-projected Landweber reconstruction algorithm. By means of single value decomposition, we have adapted this algorithm to perform fast and precise reconstruction while operating with binary and ternary matrices. Simulations are provided to qualify the approach.Ministerio de Economía y Competitividad TEC2015-66878-C3-1-RJunta de Andalucía TIC 2338-2013Office of Naval Research (USA) N000141410355European Union H2020 76586

    1D Cellular Automata for Pulse Width Modulated Compressive Sampling CMOS Image Sensors

    Get PDF
    Compressive sensing (CS) is an alternative to the Shannon limit when the signal to be acquired is known to be sparse or compressible in some domain. Since compressed samples are non-hierarchical packages of information, this acquisition technique can be employed to overcome channel losses and restricted data rates. The quality of the compressed samples that a sensor can deliver is affected by the measurement matrix used to collect them. Measurement matrices usually employed in CS image sensors are recursive random-like binary matrices obtained using pseudo-random number generators (PRNG). In this paper we analyse the performance of these PRNGs in order to understand how their non-idealities affect the quality of the compressed samples. We present the architecture of a CMOS image sensor that uses class-III elementary cellular automata (ECA) and pixel pulse width modulation (PWM) to generate onchip a measurement matrix and high the quality compressed samples.Ministerio de Economía y Competitividad TEC2015-66878-C3-1-RJunta de Andalucía TIC 2338-2013Office of Naval Research N000141410355CONACYT (Mexico) MZO-2017-29106

    On evolution of CMOS image sensors

    Get PDF
    CMOS Image Sensors have become the principal technology in majority of digital cameras. They started replacing the film and Charge Coupled Devices in the last decade with the promise of lower cost, lower power requirement, higher integration and the potential of focal plane processing. However, the principal factor behind their success has been the ability to utilise the shrinkage in CMOS technology to make smaller pixels, and thereby have more resolution without increasing the cost. With the market of image sensors exploding courtesy their inte- gration with communication and computation devices, technology developers improved the CMOS processes to have better optical performance. Nevertheless, the promises of focal plane processing as well as on-chip integration have not been fulfilled. The market is still being pushed by the desire of having higher number of pixels and better image quality, however, differentiation is being difficult for any image sensor manufacturer. In the paper, we will explore potential disruptive growth directions for CMOS Image sensors and ways to achieve the same

    Communication channel analysis and real time compressed sensing for high density neural recording devices

    Get PDF
    Next generation neural recording and Brain- Machine Interface (BMI) devices call for high density or distributed systems with more than 1000 recording sites. As the recording site density grows, the device generates data on the scale of several hundred megabits per second (Mbps). Transmitting such large amounts of data induces significant power consumption and heat dissipation for the implanted electronics. Facing these constraints, efficient on-chip compression techniques become essential to the reduction of implanted systems power consumption. This paper analyzes the communication channel constraints for high density neural recording devices. This paper then quantifies the improvement on communication channel using efficient on-chip compression methods. Finally, This paper describes a Compressed Sensing (CS) based system that can reduce the data rate by > 10x times while using power on the order of a few hundred nW per recording channel

    Form Factor Improvement of Smart-Pixels for Vision Sensors through 3-D Vertically- Integrated Technologies

    Get PDF
    While conventional CMOS active pixel sensors embed only the circuitry required for photo-detection, pixel addressing and voltage buffering, smart pixels incorporate also circuitry for data processing, data storage and control of data interchange. This additional circuitry enables data processing be realized concurrently with the acquisition of images which is instrumental to reduce the number of data needed to carry to information contained into images. This way, more efficient vision systems can be built at the cost of larger pixel pitch. Vertically-integrated 3D technologies enable to keep the advnatges of smart pixels while improving the form factor of smart pixels.Office of Naval Research N000141110312Ministerio de Ciencia e Innovación IPT-2011-1625-43000

    Advances on CMOS image sensors

    Get PDF
    This paper offers an introduction to the technological advances of image sensors designed using complementary metal–oxide–semiconductor (CMOS) processes along the last decades. We review some of those technological advances and examine potential disruptive growth directions for CMOS image sensors and proposed ways to achieve them. Those advances include breakthroughs on image quality such as resolution, capture speed, light sensitivity and color detection and advances on the computational imaging. The current trend is to push the innovation efforts even further as the market requires higher resolution, higher speed, lower power consumption and, mainly, lower cost sensors. Although CMOS image sensors are currently used in several different applications from consumer to defense to medical diagnosis, product differentiation is becoming both a requirement and a difficult goal for any image sensor manufacturer. The unique properties of CMOS process allows the integration of several signal processing techniques and are driving the impressive advancement of the computational imaging. With this paper, we offer a very comprehensive review of methods, techniques, designs and fabrication of CMOS image sensors that have impacted or might will impact the images sensor applications and markets

    Quantum-inspired computational imaging

    Get PDF
    Computational imaging combines measurement and computational methods with the aim of forming images even when the measurement conditions are weak, few in number, or highly indirect. The recent surge in quantum-inspired imaging sensors, together with a new wave of algorithms allowing on-chip, scalable and robust data processing, has induced an increase of activity with notable results in the domain of low-light flux imaging and sensing. We provide an overview of the major challenges encountered in low-illumination (e.g., ultrafast) imaging and how these problems have recently been addressed for imaging applications in extreme conditions. These methods provide examples of the future imaging solutions to be developed, for which the best results are expected to arise from an efficient codesign of the sensors and data analysis tools.Y.A. acknowledges support from the UK Royal Academy of Engineering under the Research Fellowship Scheme (RF201617/16/31). S.McL. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grant EP/J015180/1). V.G. acknowledges support from the U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office award W911NF-10-1-0404, the U.S. DARPA REVEAL program through contract HR0011-16-C-0030, and U.S. National Science Foundation through grants 1161413 and 1422034. A.H. acknowledges support from U.S. Army Research Office award W911NF-15-1-0479, U.S. Department of the Air Force grant FA8650-15-D-1845, and U.S. Department of Energy National Nuclear Security Administration grant DE-NA0002534. D.F. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grants EP/M006514/1 and EP/M01326X/1). (RF201617/16/31 - UK Royal Academy of Engineering; EP/J015180/1 - UK Engineering and Physical Sciences Research Council; EP/M006514/1 - UK Engineering and Physical Sciences Research Council; EP/M01326X/1 - UK Engineering and Physical Sciences Research Council; W911NF-10-1-0404 - U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office; HR0011-16-C-0030 - U.S. DARPA REVEAL program; 1161413 - U.S. National Science Foundation; 1422034 - U.S. National Science Foundation; W911NF-15-1-0479 - U.S. Army Research Office; FA8650-15-D-1845 - U.S. Department of the Air Force; DE-NA0002534 - U.S. Department of Energy National Nuclear Security Administration)Accepted manuscrip
    corecore