870 research outputs found

    TechNews digests: Autumn 2004

    Get PDF
    TechNews is a technology, news and analysis service aimed at anyone in the education sector keen to stay informed about technology developments, trends and issues. TechNews focuses on emerging technologies and other technology news. TechNews service : digests september 2004 till May 2010 Analysis pieces and News combined publish every 2 to 3 month

    Energy Saving Strategies on Mobile Devices

    Get PDF

    Network Traffic Aware Smartphone Energy Savings

    Get PDF
    In today\u27s world of ubiquitous Smartphone use, extending the battery life has become an important issue. A significant contributor to battery drain is wireless networking. Common usage patterns expect Smartphones to maintain a constant Internet connection which exacerbates the problem.;Our research entitled A Network Traffic Approach to Smartphone Energy Savings focuses on extending Smartphone battery life by investigating how network traffic impacts power management of wireless devices. We explore 1) Real-time VoIP application energy savings by exploiting silence periods in conversation. WiFi is opportunistically placed into low power mode during Silence periods. 2.) The priority of Smartphone Application network traffic is used to modifiy WiFi radio power management using machine learning assisted prioritization. High priority network traffic is optimized for performance, consuming more energy while low priority network traffic is optimized for energy conservation. 3.) A hybrid multiple PHY, MAC layer approach to saving energy is also utilized. The Bluetooth assisted WiFi approach saves energy by combining high power, high throughput WiFi with low power, lower throughput Bluetooth. The switch between Bluetooth and WiFi is done opportunistically based upon the current data rate and health of the Bluetooth connection.;Our results show that application specific methods for wireless energy savings are very effective. We have demonstrated energy savings exceeding 50% in generic cases. With real-time VoIP applications we have shown upwards of 40% energy savings while maintaining good call quality. The hybrid multiple PHY approach saves more than 25% energy over existing solutions while attaining the capability of quickly adapting to changes in network traffic

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Improving the Performance of Wireless LANs

    Get PDF
    This book quantifies the key factors of WLAN performance and describes methods for improvement. It provides theoretical background and empirical results for the optimum planning and deployment of indoor WLAN systems, explaining the fundamentals while supplying guidelines for design, modeling, and performance evaluation. It discusses environmental effects on WLAN systems, protocol redesign for routing and MAC, and traffic distribution; examines emerging and future network technologies; and includes radio propagation and site measurements, simulations for various network design scenarios, numerous illustrations, practical examples, and learning aids

    ëŹŽì„ ëžœ ëč„디였 멀티ìșìŠ€íŠžì˜ ëŹžì œ 발êČŹ 및 성늄 햄상 êž°ëȕ

    Get PDF
    í•™ìœ„ë…ŒëŹž (ë°•ì‚Ź)-- 서욞대학ꔐ 대학원 êł”êłŒëŒ€í•™ ì „êž°Â·ì»Ží“ší„°êł”í•™ë¶€, 2017. 8. 씜성현.Video multicast, streaming real-time videos via multicast, over wireless local area network (WLAN) has been considered a promising solution to share common venue-specific videos. By virtue of the nature of the wireless broadcast medium, video multicast basically enables scale-free video delivery, i.e., it can deliver a common video with the fixed amount of wireless resource regardless of the number of receivers. However, video multicast has not been widely enjoyed in our lives due to three major challenges: (1) power saving-related problem, (2) low reliability and efficiency, and (3) limited coverage. In this dissertation, we consider three research topics, i.e., (1) identification of practical issues with multicast power saving, (2) physical (PHY) rate and forward erasure correction code (FEC) rate adaptation over a single-hop network, and (3) multi-hop multicast, which deal with the three major challenges, respectively. Firstly, video multicast needs to be reliably delivered to power-saving stations, given that many portable devices are battery-powered. Accordingly, we investigate the impact of multicast power saving, and address two practical issues related with the multicast power saving. From the measurement with several commercial WLAN devices, we observe that many devices are not standard compliant, thus making video multicast performance severely degraded. We categorize such standard incompliant malfunctions that can result in significant packet losses. We also figure out a coexistence problem between video multicast and voice over Internet protocol (VoIP) when video receivers runs in power saving mode (PSM). The standard-compliant power save delivery of multicast deteriorates the VoIP performance in the same WLAN. We analyze the VoIP packet losses due to the coexistence problem, and propose a new power save delivery scheme to resolve the problem. We further implement the proposed scheme with an open source device driver, and our measurement results demonstrate that the proposed scheme significantly enhances the VoIP performance without sacrificing the video multicast performance. Second, multi-PHY rate FEC-applied wireless multicast enables reliable and efficient video multicast with intelligent selection of PHY rate and FEC rate. The optimal PHY/FEC rates depend on the cause of the packet losses. However, previous approaches select the PHY/FEC rates by considering only channel errors even when interference is also a major source of packet losses.We propose InFRA, an interference-aware PHY/FEC rate adaptation framework that (1) infers the cause of the packet losses based on received signal strength indicator (RSSI) and cyclic redundancy check (CRC) error notifications, and (2) determines the PHY/FEC rates based on the cause of packet losses. Our prototype implementation with off-the-shelf chipsets demonstrates that InFRA enhances the multicast delivery under various network scenarios. InFRA enables 2.3x and 1.8x more nodes to achieve a target video packet loss rate with a contention interferer and a hidden interferer, respectively, compared with the state-of-theart PHY/FEC rate adaptation scheme. To the best of our knowledge, InFRA is the first work to take the impact of interference into account for the PHY/FEC rate adaptation. Finally, collaborative relaying that enables selected receiver nodes to relay the received packets from source node to other nodes enhances service coverage, reliability, and efficiency of video multicast. The intelligent selection of sender nodes (source and relays) and their transmission parameters (PHY rate and the number of packets to send) is the key to optimize the performance. We propose EV-CAST, an interference and energy-aware video multicast system using collaborative relays, which entails online network management based on interference-aware link characterization, an algorithm for joint determination of sender nodes and transmission parameters, and polling-based relay protocol. In order to select most appropriate set of the relay nodes, EV-CAST considers interference, battery status, and spatial reuse, as well as other factors accumulated over last decades. Our prototype-based measurement results demonstrate that EV-CAST outperforms the state-of-the-art video multicast schemes. In summary, from Chapter 2 to Chapter 4, the aforementioned three pieces of the research work, i.e., identification of power saving-related practical issues, InFRA for interference-resilient single-hop multicast, and EV-CAST for efficient multi-hop multicast, will be presented, respectively.1 Introduction 1 1.1 Video Multicast over WLAN 1 1.2 Overview of Existing Approaches 4 1.2.1 Multicast Power Saving 4 1.2.2 Reliability and Efficiency Enhancement 4 1.2.3 Coverage Extension 5 1.3 Main Contributions 7 1.3.1 Practical Issues with Multicast Power Saving 7 1.3.2 Interference-aware PHY/FEC Rate Adaptation 8 1.3.3 Energy-aware Multi-hop Multicast 9 1.4 Organization of the Dissertation 10 2 Practical Issues with Multicast Power Saving 12 2.1 Introduction 12 2.2 Multicast & Power Management Operation in IEEE 802.11 14 2.3 Inter-operability Issue 15 2.3.1 Malfunctions of Commercial WLAN Devices 17 2.3.2 Performance Evaluation 20 2.4 Coexistence Problem of Video Multicast and VoIP 21 2.4.1 Problem Statement 21 2.4.2 Problem Identification: A Measurement Study 23 2.4.3 Packet Loss Analysis 27 2.4.4 Proposed Scheme 32 2.4.5 Performance Evaluation 33 2.5 Summary 37 3 InFRA: Interference-Aware PHY/FEC Rate Adaptation for Video Multicast over WLAN 39 3.1 Introduction 39 3.2 Related Work 42 3.2.1 Reliable Multicast Protocol 42 3.2.2 PHY/FEC rate adaptation for multicast service 44 3.2.3 Wireless Video Transmission 45 3.2.4 Wireless Loss Differentiation 46 3.3 Impact of Interference on Multi-rate FEC-applied Multicast 46 3.3.1 Measurement Setup 47 3.3.2 Measurement Results 47 3.4 InFRA: Interference-aware PHY/FEC Rate Adaptation Framework 49 3.4.1 Network Model and Objective 49 3.4.2 Overall Architecture 50 3.4.3 FEC Scheme 52 3.4.4 STA-side Operation 53 3.4.5 AP-side Operation 61 3.4.6 Practical Issues 62 3.5 Performance Evaluation 65 3.5.1 Measurement Setup 66 3.5.2 Small Scale Evaluation 67 3.5.3 Large Scale Evaluation 70 3.6 Summary 74 4 EV-CAST: Interference and Energy-aware Video Multicast Exploiting Collaborative Relays 75 4.1 Introduction 75 4.2 Factors for Sender Node and Transmission Parameter Selection 78 4.3 EV-CAST: Interference and Energy-aware Multicast Exploiting Collaborative Relays 80 4.3.1 Network Model and Objective 80 4.3.2 Overview 81 4.3.3 Network Management 81 4.3.4 Interference and Energy-aware Sender Nodes and Transmission Parameter Selection (INFER) Algorithm 87 4.3.5 Assignment, Polling, and Re-selection of Relays 93 4.3.6 Discussion 95 4.4 Evaluation 96 4.4.1 Measurement Setup 96 4.4.2 Micro-benchmark 98 4.4.3 Macro-benchmark 103 4.5 Related Work 105 4.5.1 Multicast Opportunistic Routing 105 4.5.2 Multicast over WLAN 106 4.6 Summary 106 5 Conclusion 108 5.1 Research Contributions 108 5.2 Future Research Directions 109 Abstract (In Korean) 121Docto

    Experimenting with commodity 802.11 hardware: overview and future directions

    Get PDF
    The huge adoption of 802.11 technologies has triggered a vast amount of experimentally-driven research works. These works range from performance analysis to protocol enhancements, including the proposal of novel applications and services. Due to the affordability of the technology, this experimental research is typically based on commercial off-the-shelf (COTS) devices, and, given the rate at which 802.11 releases new standards (which are adopted into new, affordable devices), the field is likely to continue to produce results. In this paper, we review and categorise the most prevalent works carried out with 802.11 COTS devices over the past 15 years, to present a timely snapshot of the areas that have attracted the most attention so far, through a taxonomy that distinguishes between performance studies, enhancements, services, and methodology. In this way, we provide a quick overview of the results achieved by the research community that enables prospective authors to identify potential areas of new research, some of which are discussed after the presentation of the survey.This work has been partly supported by the European Community through the CROWD project (FP7-ICT-318115) and by the Madrid Regional Government through the TIGRE5-CM program (S2013/ICE-2919).Publicad

    Support of resource-aware vertical handovers in WLAN hotspots

    Get PDF
    EndgerĂ€te wie Smartphones oder Tablets bieten hĂ€ufig eine Vielfalt drahtloser ZugĂ€nge zum Internet an. Üblicherweise schließt dies die 802.11 WLANs und auch Technologien drahtloser Weitverkehrsnetze (WWANs) aus dem Bereich LTE oder WiMAX ein. Aufgrund dieser Optionen haben sich die Endanwender daran gewöhnt, ĂŒberall und zu jeder Zeit auf ihre Internetdienste zuzugreifen. Damit hat auch der Datenverkehr pro Anwender zugenommen, was eine Herausforderung insbesondere fĂŒr die Betreiber von WWANs ist. Soweit verfĂŒgbar, favorisieren Endanwender heutzutage eher einen drahtlosen Zugang zum Internet ĂŒber WLANs als ĂŒber WWANs. Des Weiteren haben die 3GPP-Standardisierungsgremien AnsĂ€tze erarbeitet, die zusĂ€tzlich Verkehr aus WWANs in Netze mit geringerer Abdeckung wie WLAN- oder Femto-Zellen abgeben. Solche AnsĂ€tze werden auch als "Traffic Offloading" bezeichnet und haben das Ziel, die WWANs zu entlasten. Dabei werden jedoch eher einfache Strategien verfolgt, die auf der Nutzung zusĂ€tzlicher KapazitĂ€ten heterogener Netze beruhen und dann angewendet werden, wenn ein alternatives Zugangsnetz fĂŒr ein EndgerĂ€t verfĂŒgbar ist. Im Rahmen dieser Arbeit zeigen wir Gewinne auf, die entstehen, wenn man die Auswahl der EndgerĂ€te fĂŒr ein WLAN-Netz stattdessen auf Basis der von ihnen belegten Ressourcen durchfĂŒhrt. In diesem Kontext schlagen wir vor, GerĂ€te mit stark negativem Einfluss auf die WLAN-KapazitĂ€t wieder zurĂŒck in das WWAN zu reichen, was wir als "Onloading" bezeichnen. Ein solches "Onloading" zieht Herausforderungen in unterschiedlichen Richtungen mit sich. Die fortschreitende Miniaturisierung hat in den letzten Jahren zu dem Trend gefĂŒhrt, die Anzahl der Netzwerkkarten (NICs) in EndgerĂ€ten zu reduzieren. Wir bezeichnen eine NIC als multimodal, wenn sie mehrere Funktechnologien unterstĂŒtzt, aber zu einem bestimmten Zeitpunkt immer nur eine davon genutzt werden kann. Deswegen stellt fĂŒr eine multimodale NIC das "Onloading" wĂ€hrend einer laufenden Verbindung eine Herausforderung dar. Wir schlagen einen Ansatz vor, der vorbereitende Mechanismen fĂŒr ein "Onloading" als auch eine laufende Verbindung im WLAN ĂŒber eine solche NIC ermöglicht. Des Weiteren ist es wichtig, in einem WLAN Hotspot zu entscheiden, welche GerĂ€te einen negativen Einfluss auf die KapazitĂ€t des Netzes haben. DafĂŒr haben wir eine Metrik entwickelt, die eine Entscheidungsgrundlage fĂŒr das Onloading bildet. Diese Metrik basiert rein auf einer Beobachtung des Netzes und seiner GerĂ€te, ermöglicht jedoch keine Entscheidung fĂŒr sich neu assoziierende GerĂ€te im WLAN. Erschwerend kommt hinzu, dass viele Eigenschaften der NICs durch herstellerabhĂ€ngige Implementierungen geprĂ€gt werden. Solche Algorithmen bieten eine zusĂ€tzliche Herausforderung, da ihre internen AblĂ€ufe ĂŒblicherweise unbekannt sind. Ein bekanntes Beispiel fĂŒr solche Algorithmen stellt die Anpassung der WLAN-Link-Datenraten dar. Diese Algorithmen wĂ€hlen die jeweiligen Modulations- und Kodierungsschemata (MCSs) fĂŒr die drahtlosen Übertragungen aus. Robuste MCSs resultieren dabei in geringere Link-Datenraten und haben somit einen starken Einfluss auf die KapazitĂ€t einer WLAN-Zelle. Aus diesem Grund fokussieren wir uns auf eine AbschĂ€tzung der Datenratenwahl eines EndgerĂ€tes. Damit lassen sich im Vorfeld Aussagen treffen, ob ein GerĂ€t starken Einfluss auf die WLAN-KapazitĂ€t haben wird, so dass es fĂŒr ein "Onloading" in Frage kommt.End-user devices such as smart phones and tablets have become very popular as they offer a variety of wireless Internet accesses ranging from the WLAN standards to WWAN technologies such as LTE or even WiMAX. Due to these different wireless access options and new emerging applications—e.g., from the areas of video streaming, social networks, as well as Internet clouds—people are increasingly connecting to the Internet with their de- vices while being on the move. In line with this, the number of devices as well as the traffic demand of end users have been reported to increase rapidly over the last years which imposes a strong challenge especially for the operators of WWANs. Thereby, end users frequently tend to use settings that favor a connectivity to the Internet whenever possible rather over WLAN than over WWAN access. Further, the cellular standardization bodies of the 3GPP envision solutions to hand over on-going wireless sessions from cellular to other small cell accesses such as WLANs or femto cells. This is also known as traffic offloading essentially freeing capacity in terms of users with a certain service in the cellular accesses. Nevertheless this offloading follows a rather simple strategy to utilize additional capacity of heterogeneous accesses such as WLANs whenever being available for a given device. This thesis shows that stronger gains can be expected if the selection of devices to be served in WLANs is conducted in a resource-aware fashion including an evaluation of the WLAN traffic in terms of the channel occupation time and MAC overhead as result of contention, interference, and fluctuating channels. In this context, this thesis envisions to onload unfavorable devices negatively affecting the WLAN capacity back to WWAN accesses. A support of such an onloading imposes challenges in different dimensions. From the hardware design of devices, there is a strong trend to limit the number of separate network interface cards (NICs) due to space and cost issues. We refer to a multi-mode NIC if it covers multiple technologies, while at a given time only access to one technology is possible. Thus, smoothly onloading a device with such a NIC is by far not trivial. We present an approach that conducts handover preparation mechanisms, while also allowing a continuous WLAN communication over a multi-mode NIC. Further, it is by far not trivial to judge which subset of associated devices is negatively affecting the capacity of a WLAN hotspot. Thus, a careful evaluation of devices regarding a selection for an onloading back to WWAN accesses imposes a challenge yet. In this direction, we present a performance metric that identifies devices degrading the WLAN capacity. While our performance metric tackles a reactive selection, it falls short to support a predictive evaluation, e.g., of devices which just joined the WLAN cell. Even worse, proprietary algorithms inside a WLAN stack impose a severe challenge as their internal routines are usually not conveyed via typical management interfaces. A well-known example for this category of algorithms are the link data rate adaptation schemes, with which WLAN devices adjust the modulation and coding scheme (MCS) for their transmissions. As MCSs resulting in low link data rates may specifically degrade the capacity of a WLAN cell, we focus on an estimation regarding the data rate selection of a device as a third contribution of this thesis. This estimation enables to select devices that will likely degrade the capacity of the WLAN hotspot for an onloading in advance
    • 

    corecore