1,725,534 research outputs found

    Active flow control systems architectures for civil transport aircraft

    Get PDF
    Copyright @ 2010 American Institute of Aeronautics and AstronauticsThis paper considers the effect of choice of actuator technology and associated power systems architecture on the mass cost and power consumption of implementing active flow control systems on civil transport aircraft. The research method is based on the use of a mass model that includes a mass due to systems hardware and a mass due to the system energy usage. An Airbus A320 aircraft wing is used as a case-study application. The mass model parameters are based on first-principle physical analysis of electric and pneumatic power systems combined with empirical data on system hardware from existing equipment suppliers. Flow control methods include direct fluidic, electromechanical-fluidic, and electrofluidic actuator technologies. The mass cost of electrical power distribution is shown to be considerably less than that for pneumatic systems; however, this advantage is reduced by the requirement for relatively heavy electrical power management and conversion systems. A tradeoff exists between system power efficiency and the system hardware mass required to achieve this efficiency. For short-duration operation the flow control solution is driven toward lighter but less power-efficient systems, whereas for long-duration operation there is benefit in considering heavier but more efficient systems. It is estimated that a practical electromechanical-fluidic system for flow separation control may have a mass up to 40% of the slat mass for a leading-edge application and 5% of flap mass for a trailing-edge application.This work is funded by the Sixth European Union Framework Programme as part of the AVERT project (Contract No. AST5-CT-2006-030914

    Port-Hamiltonian systems: an introductory survey

    Get PDF
    The theory of port-Hamiltonian systems provides a framework for the geometric description of network models of physical systems. It turns out that port-based network models of physical systems immediately lend themselves to a Hamiltonian description. While the usual geometric approach to Hamiltonian systems is based on the canonical symplectic structure of the phase space or on a Poisson structure that is obtained by (symmetry) reduction of the phase space, in the case of a port-Hamiltonian system the geometric structure derives from the interconnection of its sub-systems. This motivates to consider Dirac structures instead of Poisson structures, since this notion enables one to define Hamiltonian systems with algebraic constraints. As a result, any power-conserving interconnection of port-Hamiltonian systems again defines a port-Hamiltonian system. The port-Hamiltonian description offers a systematic framework for analysis, control and simulation of complex physical systems, for lumped-parameter as well as for distributed-parameter models

    Power-based adaptive and integral control of standard mechanical systems

    Get PDF
    Recently a power-based modeling framework was introduced for mechanical systems, based on the Brayton-Moser framework. In this paper it is shown how this power-based framework is used for control of standard mechanical systems. For systems which are affected by parameter uncertainty or other unknown disturbances adaptive control and integral control are also described in this framework. The power-based control approach is also compared with the energy-shaping control of port-Hamiltonian systems. The most interesting difference is the possibility of having adaptive and integrator dynamics depending on position errors, while preserving the physical structure

    Systems Engineering of a Nuclear-Electric Spacecraft

    Get PDF
    Studies have shown that nuclear-electric propulsion systems will provide superior payload capability and unique advantages over chemical systems for high-energy deep-space missions. Conceptual design studies of unmanned spacecraft employing nuclear-electric propulsion systems have been undertaken to determine some of the major integration problems. Early recognition of these problems will help to stimulate the development effort that will be required to bring these systems into fruitful utilization. Typical designs under consideration for interplanetary missions for the next decade employ a nuclear reactor providing thermal energy to a turbogeneration system which, in turn, supplies electrical power to an ion engine for primary propulsion and additional utility power for guidance and control, powered-flight radio transmission, instrumentation, et cetera. The major systems and components which form a complete spacecraft are listed in this Report, and a review of the significant physical and operational characteristics of these various systems and components which affect spacecraft integration is made. Conceptual.configurations and detailed weight studies for a 60-kilowatts-electric Venus-capture spacecraft and a 1-megawattelectric Jupiter-capture spacecraft are shown to illustrate typical physical arrangements based on the various hardware constraints. From these configurations, the major development goals are ascertained and summarized

    A survey on modeling of microgrids - from fundamental physics to phasors and voltage sources

    Get PDF
    Microgrids have been identified as key components of modern electrical systems to facilitate the integration of renewable distributed generation units. Their analysis and controller design requires the development of advanced (typically model-based) techniques naturally posing an interesting challenge to the control community. Although there are widely accepted reduced order models to describe the dynamic behavior of microgrids, they are typically presented without details about the reduction procedure---hampering the understanding of the physical phenomena behind them. Preceded by an introduction to basic notions and definitions in power systems, the present survey reviews key characteristics and main components of a microgrid. We introduce the reader to the basic functionality of DC/AC inverters, as well as to standard operating modes and control schemes of inverter-interfaced power sources in microgrid applications. Based on this exposition and starting from fundamental physics, we present detailed dynamical models of the main microgrid components. Furthermore, we clearly state the underlying assumptions which lead to the standard reduced model with inverters represented by controllable voltage sources, as well as static network and load representations, hence, providing a complete modular model derivation of a three-phase inverter-based microgrid
    • 

    corecore