347,461 research outputs found

    Power Aware Computing on GPUs

    Get PDF
    Energy and power density concerns in modern processors have led to significant computer architecture research efforts in power-aware and temperature-aware computing. With power dissipation becoming an increasingly vexing problem, power analysis of Graphical Processing Unit (GPU) and its components has become crucial for hardware and software system design. Here, we describe our technique for a coordinated measurement approach that combines real total power measurement and per-component power estimation. To identify power consumption accurately, we introduce the Activity-based Model for GPUs (AMG), from which we identify activity factors and power for microarchitectures on GPUs that will help in analyzing power tradeoffs of one component versus another using microbenchmarks. The key challenge addressed in this thesis is real-time power consumption, which can be accurately estimated using NVIDIA\u27s Management Library (NVML) through Pthreads. We validated our model using Kill-A-Watt power meter and the results are accurate within 10\%. The resulting Performance Application Programming Interface (PAPI) NVML component offers real-time total power measurements for GPUs. This thesis also compares a single NVIDIA C2075 GPU running MAGMA (Matrix Algebra on GPU and Multicore Architectures) kernels, to a 48 core AMD Istanbul CPU running LAPACK

    Power-Aware Computing with Dynamic Knobs

    Get PDF
    We present PowerDial, a system for dynamically adapting application behavior to execute successfully in the face of load and power fluctuations. PowerDial transforms static configuration parameters into dynamic knobs that the PowerDial control system can manipulate to dynamically trade off the accuracy of the computation in return for reductions in the computational resources that the application requires to produce its results. These reductions translate into power savings. Our experimental results show that PowerDial can enable our benchmark applications to execute responsively in the face of power caps (imposed, for example, in response to cooling system failures) that would otherwise significantly impair the delivered performance. They also show that PowerDial can reduce the number of machines required to meet peak load, in our experiments enabling up to a 75% reduction in direct power and capital costs

    07041 Abstracts Collection -- Power-aware Computing Systems

    Get PDF
    From January 21, 2007 to January 26, 2007, the Dagstuhl Seminar 07041``Power-aware Computing Systems\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and discussed ongoing work and open problems. This report compiles abstracts of the seminar presentations as well as the seminar results and ideas, providing hyperlinks to full papers wherever possible

    05141 Abstracts Collection -- Power-aware Computing Systems

    Get PDF
    From 03.04.05 to 08.04.05, the Dagstuhl Seminar 05141 ``Power-aware Computing Systems\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and discussed open problems. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are collected in this paper. The first section describes the seminar topics and goals. Links to extended abstracts or full papers are provided, if available
    • …
    corecore