503 research outputs found

    TREND towards more energy-efficient optical networks

    Get PDF
    International audienceWith one third of the world population online in 2013 and an international Internet bandwidth multiplied by more than eight since 2006, the ICT sector is a non-negligible contributor of worldwide greenhouse gases emissions and power consumption. Indeed, power consumption of telecommunication networks has become a major concern for all the actors of the domain, and efforts are made to reduce their impact on the overall figure of ICTs, and to support its foreseen growth in a sustainable way. In this context, the contributors of the European Network of Excellence TREND have developed innovative solutions to improve the energy efficiency of networks. This paper gives an overview of the solutions related to optical networks

    Joint Power-Efficient Traffic Shaping and Service Provisioning for Metro Elastic Optical Networks

    Get PDF
    Considering the time-averaged behavior of a metro elastic optical network, we develop a joint procedure for resource allocation and traffic shaping to exploit the inherent service diversity among the requests for power-efficient network operation. To support the quality of service diversity, we consider minimum transmission rate, average transmission rate, maximum burst size, and average transmission delay as the adjustable parameters of a general service profile. The work evolves from a stochastic optimization problem, which minimizes the power consumption subject to stability, physical, and service constraints. The optimal solution of the problem is obtained using a complex dynamic programming method. To provide a near-optimal fast-achievable solution, we propose a sequential heuristic with a scalable and causal software implementation, according to the basic Lyapunov iterations of an integer linear program. The heuristic method has a negligible optimality gap and a considerably shorter runtime compared to the optimal dynamic programming, and reduces the consumed power by 72% for an offered traffic with a unit variation coefficient. The adjustable trade-offs of the proposed scheme offer a typical 10% power saving for an acceptable amount of excess transmission delay or drop rate

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Research challenges on energy-efficient networking design

    Get PDF
    The networking research community has started looking into key questions on energy efficiency of communication networks. The European Commission activated under the FP7 the TREND Network of Excellence with the goal of establishing the integration of the EU research community in green networking with a long perspective to consolidate the European leadership in the field. TREND integrates the activities of major European players in networking, including manufacturers, operators, research centers, to quantitatively assess the energy demand of current and future telecom infrastructures, and to design energy-efficient, scalable and sustainable future networks. This paper describes the main results of the TREND research community and concludes with a roadmap describing the next steps for standardization, regulation agencies and research in both academia and industry.The research leading to these results has received funding from the EU 7th Framework Programme (FP7/2007–2013) under Grant Agreement No. 257740 (NoE TREND)

    Control Plane Strategies for Elastic Optical Networks

    Get PDF

    A quantitative survey of the power saving potential in IP-Over-WDM backbone networks

    Get PDF
    The power consumption in Information and Communication Technologies networks is growing year by year; this growth presents challenges from technical, economic, and environmental points of view. This has lead to a great number of research publications on "green" telecommunication networks. In response, a number of survey works have appeared as well. However, with respect to backbone networks, most survey works: 1) do not allow for an easy cross validation of the savings reported in the various works and 2) nor do they provide a clear overview of the individual and combined power saving potentials. Therefore, in this paper, we survey the reported saving potential in IP-over-WDM backbone telecommunication networks across the existing body of research in that area. We do this by mapping more than ten different approaches to a concise analytical model, which allows us to estimate the combined power reduction potential. Our estimates indicate that the power reduction potential of the once-only approaches is 2.3x in a Moderate Effort scenario and 31x in a Best Effort scenario. Factoring in the historic and projected yearly efficiency improvements ("Moore's law") roughly doubles both values on a ten-year horizon. The large difference between the outcome of Moderate Effort and Best Effort scenarios is explained by the disparity and lack of clarity of the reported saving results and by our (partly) subjective assessment of the feasibility of the proposed approaches. The Moderate Effort scenario will not be sufficient to counter the projected traffic growth, although the Best Effort scenario indicates that sufficient potential is likely available. The largest isolated power reduction potential is available in improving the power associated with cooling and power provisioning and applying sleep modes to overdimensioned equipment
    • …
    corecore