2,794 research outputs found

    Cross Layer Aware Adaptive MAC based on Knowledge Based Reasoning for Cognitive Radio Computer Networks

    Full text link
    In this paper we are proposing a new concept in MAC layer protocol design for Cognitive radio by combining information held by physical layer and MAC layer with analytical engine based on knowledge based reasoning approach. In the proposed system a cross layer information regarding signal to interference and noise ratio (SINR) and received power are analyzed with help of knowledge based reasoning system to determine minimum power to transmit and size of contention window, to minimize backoff, collision, save power and drop packets. The performance analysis of the proposed protocol indicates improvement in power saving, lowering backoff and significant decrease in number of drop packets. The simulation environment was implement using OMNET++ discrete simulation tool with Mobilty framework and MiXiM simulation library.Comment: 8 page

    Experimentation with MANETs of Smartphones

    Full text link
    Mobile AdHoc NETworks (MANETs) have been identified as a key emerging technology for scenarios in which IEEE 802.11 or cellular communications are either infeasible, inefficient, or cost-ineffective. Smartphones are the most adequate network nodes in many of these scenarios, but it is not straightforward to build a network with them. We extensively survey existing possibilities to build applications on top of ad-hoc smartphone networks for experimentation purposes, and introduce a taxonomy to classify them. We present AdHocDroid, an Android package that creates an IP-level MANET of (rooted) Android smartphones, and make it publicly available to the community. AdHocDroid supports standard TCP/IP applications, providing real smartphone IEEE 802.11 MANET and the capability to easily change the routing protocol. We tested our framework on several smartphones and a laptop. We validate the MANET running off-the-shelf applications, and reporting on experimental performance evaluation, including network metrics and battery discharge rate.Comment: 6 pages, 7 figures, 1 tabl

    Scalable energy-efficient routing in mobile Ad hoc network

    Get PDF
    The quick deployment without any existing infrastructure makes mobile ad hoc networks (MANET) a striking choice for dynamic situations such as military and rescue operations, disaster recovery, and so on and so forth. However, routing remains one of the major issues in MANET due to the highly dynamic and distributed environment. Energy consumption is also a significant issue in ad hoc networks since the nodes are battery powered. This report discusses some major dominating set based approaches to perform energy efficient routing in mobile ad hoc networks. It also presents the performance results for each of these mentioned approaches in terms of throughput, average end to end delay and the life time in terms of the first node failure. Based on the simulation results, I identified the key issues in these protocols regarding network life time. In this report, I propose and discuss a new approach “Dynamic Dominating Set Generation Algorithm” (DDSG) to optimize the network life time. This algorithm dynamically selects dominating nodes during the process of routing and thus creates a smaller dominating set. DDSG algorithm thereby eliminates the energy consumption from the non-used dominating nodes. In order to further increase the network life time, the algorithm takes into consideration the threshold settings which helps to distribute the process of routing within the network. This helps to eliminate a single dominating node from getting drained out by continuous transmission and reception of packets. In this report, the detailed algorithmic design and performance results through simulation is discussed

    Power saving in wireless ad hoc networks without synchronization

    Get PDF
    Power saving strategies generally attempt to maximize the time that nodes spend in a low power consumption sleep state. Such strategies often require the sender to notify the receiver about pending traffic using some form of traffic announcement. Although asynchronous traffic announcement mechanisms are particularly suitable for the ad hoc environment, they also provide relatively limited power savings. This paper proposes a mechanism that improves the efficiency of asynchronous traffic announcement mechanisms by reducing the proportion of time that nodes need to spend awake, while still maintaining good connectivity properties. The mechanism is based on allowing traffic announcements to be rebroadcast by neighbouring nodes

    Fuzzy based load and energy aware multipath routing for mobile ad hoc networks

    Get PDF
    Routing is a challenging task in Mobile Ad hoc Networks (MANET) due to their dynamic topology and lack of central administration. As a consequence of un-predictable topology changes of such networks, routing protocols employed need to accurately capture the delay, load, available bandwidth and residual node energy at various locations of the network for effective energy and load balancing. This paper presents a fuzzy logic based scheme that ensures delay, load and energy aware routing to avoid congestion and minimise end-to-end delay in MANETs. In the proposed approach, forwarding delay, average load, available bandwidth and residual battery energy at a mobile node are given as inputs to a fuzzy inference engine to determine the traffic distribution possibility from that node based on the given fuzzy rules. Based on the output from the fuzzy system, traffic is distributed over fail-safe multiple routes to reduce the load at a congested node. Through simulation results, we show that our approach reduces end-to-end delay, packet drop and average energy consumption and increases packet delivery ratio for constant bit rate (CBR) traffic when compared with the popular Ad hoc On-demand Multipath Distance Vector (AOMDV) routing protocol
    corecore