20 research outputs found

    Reliable Lifespan Evaluation of a Remote Environment Monitoring System Based on Wireless Sensor Networks and Global System for Mobile Communications

    Get PDF
    The use of wireless sensor networks (WSN) for monitoring physical and chemical variables in large areas allows density and frequency measurements which have been unavailable to date in classical measurement systems. To fully take advantage of this technology in a particular application, besides an accurate design and selection of all the components involved in its operation, it is essential to dispose of reliable lifetime estimation prior to deployment. This paper presents an experimental approach to determine the actual lifetime of such battery-operated systems, making use of a custom WSN architecture, and for different batteries technologies. To render a reliable evaluation, the energy consumption of the sensor nodes under their different operation modes, in correlation with the battery characteristics and the voltage regulation system, is jointly considered. The result is a complete and practical lifetime model, whose appropriate performance has been validated in a real deployment scenario

    Recent Advances in Wearable Sensing Technologies

    Get PDF
    Wearable sensing technologies are having a worldwide impact on the creation of novel business opportunities and application services that are benefiting the common citizen. By using these technologies, people have transformed the way they live, interact with each other and their surroundings, their daily routines, and how they monitor their health conditions. We review recent advances in the area of wearable sensing technologies, focusing on aspects such as sensor technologies, communication infrastructures, service infrastructures, security, and privacy. We also review the use of consumer wearables during the coronavirus disease 19 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and we discuss open challenges that must be addressed to further improve the efficacy of wearable sensing systems in the future

    Improving Low Power Listening (LPL) Mechanism to Save Energy Consumption in WSN

    Get PDF
    As stated in the literature, Low Power Listening (LPL) duty cycle is one of the most common energy conservation solution for WSN. By using channel check mechanism, the purpose of LPL solutions is to reduce the energy consumption of the listening phase. In this paper, we propose to study the performances and limitations of this kind of solutions. Therefore, we deploy a ContikiMAC LPL on both real and simulated WSN platform to demonstrate the impact of LPL on the energy consumptions of the node radio and microcontroller but also on the application Quality of Service. Based on the obtained results, shortcomings of LPL solutions are highlighted and potential improvements are discussed such as the use of multi-parameter dynamic duty cycle

    Microwave Antennas for Energy Harvesting Applications

    Get PDF
    In the last few years, the demand for power has increased; therefore, the need for alternate energy sources has become essential. Sources of fossil fuels are finite, are costly, and causes environmental hazard. Sustainable, environmentally benign energy can be derived from nuclear fission or captured from ambient sources. Large-scale ambient energy is widely available and large-scale technologies are being developed to efficiently capture it. At the other end of the scale, there are small amounts of wasted energy that could be useful if captured. There are various types of external energy sources such as solar, thermal, wind, and RF energy. Energy has been harvested for different purposes in the last few recent years. Energy harvesting from inexhaustible sources with no adverse environmental effect can provide unlimited energy for harvesting in a way of powering an embedded system from the environment. It could be RF energy harvesting by using antennas that can be held on the car glass or building, or in any places. The abundant RF energy is harvested from surrounding sources. This chapter focuses on RF energy harvesting in which the abundant RF energy from surrounding sources, such as nearby mobile phones, wireless LANs (WLANs), Wi-Fi, FM/AM radio signals, and broadcast television signals or DTV, is captured by a receiving antenna and rectified into a usable DC voltage. A practical approach for RF energy harvesting design and management of the harvested and available energy for wireless sensor networks is to improve the energy efficiency and large accepted antenna gain. The emerging self-powered systems challenge and dictate the direction of research in energy harvesting (EH). There are a lot of applications of energy harvesting such as wireless weather stations, car tire pressure monitors, implantable medical devices, traffic alert signs, and mars rover. A lot of researches are done to create several designs of rectenna (antenna and rectifier) that meet various objectives for use in RF energy harvesting, whatever opaque or transparent. However, most of the designed antennas are opaque and prevent the sunlight to pass through, so it is hard to put it on the car glass or window. Thus, there should be a design for transparent antenna that allows the sunlight to pass through. Among various antennas, microstrip patch antennas are widely used because they are low profile, are lightweight, and have planar structure. Microstrip patch-structured rectennas are evaluated and compared with an emphasis on the various methods adopted to obtain a rectenna with harmonic rejection functionality, frequency, and polarization selectivity. Multiple frequency bands are tapped for energy harvesting, and this aspect of the implementation is one of the main focus points. The bands targeted for harvesting in this chapter will be those that are the most readily available to the general population. These include Wi-Fi hotspots, as well as cellular (900/850 MHz band), personal communications services (1800/1900 MHz band), and sources of 2.4 GHz and WiMAX (2.3/3.5 GHz) network transmitters. On the other hand, at high frequency, advances in nanotechnology have led to the development of semiconductor-based solar cells, nanoscale antennas for power harvesting applications, and integration of antennas into solar cells to design low-cost light-weight systems. The role of nanoantenna system is transforming thermal energy provided by the sun to electricity. Nanoantennas target the mid-infrared wavelengths where conventional photo voltaic cells are inefficient. However, the concept of using optical rectenna for harvesting solar energy was first introduced four decades ago. Recently, it has invited a surge of interest, with different laboratories around the world working on various aspects of the technology. The result is a technology that can be efficient and inexpensive, requiring only low-cost materials. Unlike conventional solar cells that harvest energy in visible light frequency range. Since the UV frequency range is much greater than visible light, we consider the quantum mechanical behavior of a driven particle in nanoscale antennas for power harvesting applications

    Harvesting Ambient Environmental Energy for Wireless Sensor Networks: A Survey

    Get PDF
    In recent years, wireless sensor networks (WSNs) have grown dramatically and made a great progress in many applications. But having limited life, batteries, as the power sources of wireless sensor nodes, have restricted the development and application of WSNs which often requires a very long lifespan for better performance. In order to make the WSNs prevalent in our lives, an alternative energy source is required. Environmental energy is an attractive power source, and it provides an approach to make the sensor nodes self-powered with the possibility of an almost infinite lifetime. The goal of this survey is to present a comprehensive review of the recent literature on the various possible energy harvesting technologies from ambient environment for WSNs

    Rf Energy Harvesting For Wireless Communication Systems: Statistical Models For Battery Recharging Time

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2014Thesis (M.Sc.) -- İstanbul Technical University, Instıtute of Science and Technology, 2014Yeni bir enerji kaynağı olarak nitelenebilecek olan enerji hasatlama sistemleri, enerji kullanan her cihazın çevrede bulunan mevcut enerji kaynaklarını kullanarak, enerji bakımından kendi kendine yetmesi olarak açıklanabilir. Özellikle düşük güç harcayan cihazlarla kullanıldığında enerji hasatlama bütünleyici bir çözüm olarak ortaya çıkmaktadır. Elektromanyetik frekans spektrumunun bir bölümü olan radyofrekans (RF) işaretleri de, haberleşme sistemleri için enerji hasatlama yapılabilecek enerji kaynaklarından biridir. Bu tezde, RF işaretinden enerji hasatlama konusu ele alınmakta ve RF işaretinden enerji hasatlama sistemlerinde pil şarj zamanının istatistiki olarak nitelenmesi üzerine bir çalışma yapılmaktadır.Energy harvesting systems contribute to energy requirements of low-power devices as renewable energy sources. Radio frequency (RF) signal energy can be used as an energy source for energy harvesting systems. The RF signal energy available in the medium is received by the antenna of RF energy harvesting system, and converted to DC signal energy to power the electrical device. In this thesis, RF energy harvesting is emphasized for providing energy to wireless communication devices. Moreover, the distributions of battery recharging time are characterized for various wireless channel models.Yüksek LisansM.Sc

    Doctor of Philosophy

    Get PDF
    dissertationLow-cost wireless embedded systems can make radio channel measurements for the purposes of radio localization, synchronization, and breathing monitoring. Most of those systems measure the radio channel via the received signal strength indicator (RSSI), which is widely available on inexpensive radio transceivers. However, the use of standard RSSI imposes multiple limitations on the accuracy and reliability of such systems; moreover, higher accuracy is only accessible with very high-cost systems, both in bandwidth and device costs. On the other hand, wireless devices also rely on synchronized notion of time to coordinate tasks (transmit, receive, sleep, etc.), especially in time-based localization systems. Existing solutions use multiple message exchanges to estimate time offset and clock skew, which further increases channel utilization. In this dissertation, the design of the systems that use RSSI for device-free localization, device-based localization, and breathing monitoring applications are evaluated. Next, the design and evaluation of novel wireless embedded systems are introduced to enable more fine-grained radio signal measurements to the application. I design and study the effect of increasing the resolution of RSSI beyond the typical 1 dB step size, which is the current standard, with a couple of example applications: breathing monitoring and gesture recognition. Lastly, the Stitch architecture is then proposed to allow the frequency and time synchronization of multiple nodes' clocks. The prototype platform, Chronos, implements radio frequency synchronization (RFS), which accesses complex baseband samples from a low-power low-cost narrowband radio, estimates the carrier frequency offset, and iteratively drives the difference between two nodes' main local oscillators (LO) to less than 3 parts per billion (ppb). An optimized time synchronization and ranging protocols (EffToF) is designed and implemented to achieve the same timing accuracy as the state-of-the-art but with 59% less utilization of the UWB channel. Based on this dissertation, I could foresee Stitch and RFS further improving the robustness of communications infrastructure to GPS jamming, allow exploration of applications such as distributed beamforming and MIMO, and enable new highly-synchronous wireless sensing and actuation systems
    corecore