7 research outputs found

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers

    Implementaci贸n de algoritmo para calcular la correlaci贸n bitstream entre dos se帽ales para detectar sonidos de disparos y motosierras en el bosque.

    Get PDF
    Proyecto de Graduaci贸n (Licenciatura en Ingenier铆a Electr贸nica) Instituto Tecnol贸gico de Costa Rica, Escuela de Ingenier铆a Electr贸nica, 2016.Cross correlation is a way of measuring how similar two signals are. However, traditional methods of implementing this algorithm require a lot of resources which promotes a constant search of alternative ways of performing it. This project intended to develop a prototipical implementation of a bitstream based correlation between to signals, simplifying the necessary hardware for the operations and making it feasible. The results of this project are meant to be use to help in the battle against illegal hunting and logging of Costa Rican tropical forest by providing another way to detect shooting and chainsaws sounds

    Autonomously Reconfigurable Artificial Neural Network on a Chip

    Get PDF
    Artificial neural network (ANN), an established bio-inspired computing paradigm, has proved very effective in a variety of real-world problems and particularly useful for various emerging biomedical applications using specialized ANN hardware. Unfortunately, these ANN-based systems are increasingly vulnerable to both transient and permanent faults due to unrelenting advances in CMOS technology scaling, which sometimes can be catastrophic. The considerable resource and energy consumption and the lack of dynamic adaptability make conventional fault-tolerant techniques unsuitable for future portable medical solutions. Inspired by the self-healing and self-recovery mechanisms of human nervous system, this research seeks to address reliability issues of ANN-based hardware by proposing an Autonomously Reconfigurable Artificial Neural Network (ARANN) architectural framework. Leveraging the homogeneous structural characteristics of neural networks, ARANN is capable of adapting its structures and operations, both algorithmically and microarchitecturally, to react to unexpected neuron failures. Specifically, we propose three key techniques --- Distributed ANN, Decoupled Virtual-to-Physical Neuron Mapping, and Dual-Layer Synchronization --- to achieve cost-effective structural adaptation and ensure accurate system recovery. Moreover, an ARANN-enabled self-optimizing workflow is presented to adaptively explore a "Pareto-optimal" neural network structure for a given application, on the fly. Implemented and demonstrated on a Virtex-5 FPGA, ARANN can cover and adapt 93% chip area (neurons) with less than 1% chip overhead and O(n) reconfiguration latency. A detailed performance analysis has been completed based on various recovery scenarios

    Design of a secure architecture for the exchange of biomedical information in m-Health scenarios

    Get PDF
    El paradigma de m-Salud (salud m贸vil) aboga por la integraci贸n masiva de las m谩s avanzadas tecnolog铆as de comunicaci贸n, red m贸vil y sensores en aplicaciones y sistemas de salud, para fomentar el despliegue de un nuevo modelo de atenci贸n cl铆nica centrada en el usuario/paciente. Este modelo tiene por objetivos el empoderamiento de los usuarios en la gesti贸n de su propia salud (p.ej. aumentando sus conocimientos, promocionando estilos de vida saludable y previniendo enfermedades), la prestaci贸n de una mejor tele-asistencia sanitaria en el hogar para ancianos y pacientes cr贸nicos y una notable disminuci贸n del gasto de los Sistemas de Salud gracias a la reducci贸n del n煤mero y la duraci贸n de las hospitalizaciones. No obstante, estas ventajas, atribuidas a las aplicaciones de m-Salud, suelen venir acompa帽adas del requisito de un alto grado de disponibilidad de la informaci贸n biom茅dica de sus usuarios para garantizar una alta calidad de servicio, p.ej. fusionar varias se帽ales de un usuario para obtener un diagn贸stico m谩s preciso. La consecuencia negativa de cumplir esta demanda es el aumento directo de las superficies potencialmente vulnerables a ataques, lo que sit煤a a la seguridad (y a la privacidad) del modelo de m-Salud como factor cr铆tico para su 茅xito. Como requisito no funcional de las aplicaciones de m-Salud, la seguridad ha recibido menos atenci贸n que otros requisitos t茅cnicos que eran m谩s urgentes en etapas de desarrollo previas, tales como la robustez, la eficiencia, la interoperabilidad o la usabilidad. Otro factor importante que ha contribuido a retrasar la implementaci贸n de pol铆ticas de seguridad s贸lidas es que garantizar un determinado nivel de seguridad implica unos costes que pueden ser muy relevantes en varias dimensiones, en especial en la econ贸mica (p.ej. sobrecostes por la inclusi贸n de hardware extra para la autenticaci贸n de usuarios), en el rendimiento (p.ej. reducci贸n de la eficiencia y de la interoperabilidad debido a la integraci贸n de elementos de seguridad) y en la usabilidad (p.ej. configuraci贸n m谩s complicada de dispositivos y aplicaciones de salud debido a las nuevas opciones de seguridad). Por tanto, las soluciones de seguridad que persigan satisfacer a todos los actores del contexto de m-Salud (usuarios, pacientes, personal m茅dico, personal t茅cnico, legisladores, fabricantes de dispositivos y equipos, etc.) deben ser robustas y al mismo tiempo minimizar sus costes asociados. Esta Tesis detalla una propuesta de seguridad, compuesta por cuatro grandes bloques interconectados, para dotar de seguridad a las arquitecturas de m-Salud con unos costes reducidos. El primer bloque define un esquema global que proporciona unos niveles de seguridad e interoperabilidad acordes con las caracter铆sticas de las distintas aplicaciones de m-Salud. Este esquema est谩 compuesto por tres capas diferenciadas, dise帽adas a la medidas de los dominios de m-Salud y de sus restricciones, incluyendo medidas de seguridad adecuadas para la defensa contra las amenazas asociadas a sus aplicaciones de m-Salud. El segundo bloque establece la extensi贸n de seguridad de aquellos protocolos est谩ndar que permiten la adquisici贸n, el intercambio y/o la administraci贸n de informaci贸n biom茅dica -- por tanto, usados por muchas aplicaciones de m-Salud -- pero no re煤nen los niveles de seguridad detallados en el esquema previo. Estas extensiones se concretan para los est谩ndares biom茅dicos ISO/IEEE 11073 PHD y SCP-ECG. El tercer bloque propone nuevas formas de fortalecer la seguridad de los tests biom茅dicos, que constituyen el elemento esencial de muchas aplicaciones de m-Salud de car谩cter cl铆nico, mediante codificaciones novedosas. Finalmente el cuarto bloque, que se sit煤a en paralelo a los anteriores, selecciona herramientas gen茅ricas de seguridad (elementos de autenticaci贸n y criptogr谩ficos) cuya integraci贸n en los otros bloques resulta id贸nea, y desarrolla nuevas herramientas de seguridad, basadas en se帽al -- embedding y keytagging --, para reforzar la protecci贸n de los test biom茅dicos.The paradigm of m-Health (mobile health) advocates for the massive integration of advanced mobile communications, network and sensor technologies in healthcare applications and systems to foster the deployment of a new, user/patient-centered healthcare model enabling the empowerment of users in the management of their health (e.g. by increasing their health literacy, promoting healthy lifestyles and the prevention of diseases), a better home-based healthcare delivery for elderly and chronic patients and important savings for healthcare systems due to the reduction of hospitalizations in number and duration. It is a fact that many m-Health applications demand high availability of biomedical information from their users (for further accurate analysis, e.g. by fusion of various signals) to guarantee high quality of service, which on the other hand entails increasing the potential surfaces for attacks. Therefore, it is not surprising that security (and privacy) is commonly included among the most important barriers for the success of m-Health. As a non-functional requirement for m-Health applications, security has received less attention than other technical issues that were more pressing at earlier development stages, such as reliability, eficiency, interoperability or usability. Another fact that has contributed to delaying the enforcement of robust security policies is that guaranteeing a certain security level implies costs that can be very relevant and that span along diferent dimensions. These include budgeting (e.g. the demand of extra hardware for user authentication), performance (e.g. lower eficiency and interoperability due to the addition of security elements) and usability (e.g. cumbersome configuration of devices and applications due to security options). Therefore, security solutions that aim to satisfy all the stakeholders in the m-Health context (users/patients, medical staff, technical staff, systems and devices manufacturers, regulators, etc.) shall be robust and, at the same time, minimize their associated costs. This Thesis details a proposal, composed of four interrelated blocks, to integrate appropriate levels of security in m-Health architectures in a cost-efcient manner. The first block designes a global scheme that provides different security and interoperability levels accordingto how critical are the m-Health applications to be implemented. This consists ofthree layers tailored to the m-Health domains and their constraints, whose security countermeasures defend against the threats of their associated m-Health applications. Next, the second block addresses the security extension of those standard protocols that enable the acquisition, exchange and/or management of biomedical information | thus, used by many m-Health applications | but do not meet the security levels described in the former scheme. These extensions are materialized for the biomedical standards ISO/IEEE 11073 PHD and SCP-ECG. Then, the third block proposes new ways of enhancing the security of biomedical standards, which are the centerpiece of many clinical m-Health applications, by means of novel codings. Finally the fourth block, with is parallel to the others, selects generic security methods (for user authentication and cryptographic protection) whose integration in the other blocks results optimal, and also develops novel signal-based methods (embedding and keytagging) for strengthening the security of biomedical tests. The layer-based extensions of the standards ISO/IEEE 11073 PHD and SCP-ECG can be considered as robust, cost-eficient and respectful with their original features and contents. The former adds no attributes to its data information model, four new frames to the service model |and extends four with new sub-frames|, and only one new sub-state to the communication model. Furthermore, a lightweight architecture consisting of a personal health device mounting a 9 MHz processor and an aggregator mounting a 1 GHz processor is enough to transmit a 3-lead electrocardiogram in real-time implementing the top security layer. The extra requirements associated to this extension are an initial configuration of the health device and the aggregator, tokens for identification/authentication of users if these devices are to be shared and the implementation of certain IHE profiles in the aggregator to enable the integration of measurements in healthcare systems. As regards to the extension of SCP-ECG, it only adds a new section with selected security elements and syntax in order to protect the rest of file contents and provide proper role-based access control. The overhead introduced in the protected SCP-ECG is typically 2{13 % of the regular file size, and the extra delays to protect a newly generated SCP-ECG file and to access it for interpretation are respectively a 2{10 % and a 5 % of the regular delays. As regards to the signal-based security techniques developed, the embedding method is the basis for the proposal of a generic coding for tests composed of biomedical signals, periodic measurements and contextual information. This has been adjusted and evaluated with electrocardiogram and electroencephalogram-based tests, proving the objective clinical quality of the coded tests, the capacity of the coding-access system to operate in real-time (overall delays of 2 s for electrocardiograms and 3.3 s for electroencephalograms) and its high usability. Despite of the embedding of security and metadata to enable m-Health services, the compression ratios obtained by this coding range from ' 3 in real-time transmission to ' 5 in offline operation. Complementarily, keytagging permits associating information to images (and other signals) by means of keys in a secure and non-distorting fashion, which has been availed to implement security measures such as image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. The tests conducted indicate a remarkable robustness-capacity tradeoff that permits implementing all this measures simultaneously, and the compatibility of keytagging with JPEG2000 compression, maintaining this tradeoff while setting the overall keytagging delay in only ' 120 ms for any image size | evidencing the scalability of this technique. As a general conclusion, it has been demonstrated and illustrated with examples that there are various, complementary and structured manners to contribute in the implementation of suitable security levels for m-Health architectures with a moderate cost in budget, performance, interoperability and usability. The m-Health landscape is evolving permanently along all their dimensions, and this Thesis aims to do so with its security. Furthermore, the lessons learned herein may offer further guidance for the elaboration of more comprehensive and updated security schemes, for the extension of other biomedical standards featuring low emphasis on security or privacy, and for the improvement of the state of the art regarding signal-based protection methods and applications

    Power efficient cross-correlation beat detection in electrocardiogram analysis using bitstreams

    No full text

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementaci贸n sistem谩tica de la telemedicina dentro de un gran centro de evaluaci贸n de COVID-19 en el 谩rea de Baja California, M茅xico. Nuestro modelo se basa en factores de dise帽o centrados en el ser humano y colaboraciones interdisciplinarias para la habilitaci贸n escalable basada en datos de tecnolog铆as de teleconsulta de tel茅fonos inteligentes, celulares y video para vincular hospitales, cl铆nicas y servicios m茅dicos de emergencia para evaluaciones de COVID en el punto de atenci贸n. pruebas, y para el tratamiento posterior y decisiones de cuarentena. R谩pidamente se cre贸 un equipo multidisciplinario, en cooperaci贸n con diferentes instituciones, entre ellas: la Universidad Aut贸noma de Baja California, la Secretar铆a de Salud, el Centro de Comando, Comunicaciones y Control Inform谩tico. de la Secretar铆a del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psic贸logos. Nuestro objetivo es proporcionar informaci贸n al p煤blico y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignaci贸n de recursos con la anticipaci贸n de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-
    corecore