112 research outputs found

    Modeling Data-Plane Power Consumption of Future Internet Architectures

    Full text link
    With current efforts to design Future Internet Architectures (FIAs), the evaluation and comparison of different proposals is an interesting research challenge. Previously, metrics such as bandwidth or latency have commonly been used to compare FIAs to IP networks. We suggest the use of power consumption as a metric to compare FIAs. While low power consumption is an important goal in its own right (as lower energy use translates to smaller environmental impact as well as lower operating costs), power consumption can also serve as a proxy for other metrics such as bandwidth and processor load. Lacking power consumption statistics about either commodity FIA routers or widely deployed FIA testbeds, we propose models for power consumption of FIA routers. Based on our models, we simulate scenarios for measuring power consumption of content delivery in different FIAs. Specifically, we address two questions: 1) which of the proposed FIA candidates achieves the lowest energy footprint; and 2) which set of design choices yields a power-efficient network architecture? Although the lack of real-world data makes numerous assumptions necessary for our analysis, we explore the uncertainty of our calculations through sensitivity analysis of input parameters

    Energy-Efficiency in Optical Networks

    Get PDF

    FISE: A Forwarding Table Structure for Enterprise Networks

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordWith increasing demands for more flexible services, the routing policies in enterprise networks become much richer. This has placed a heavy burden to the current router forwarding plane in support of the increasing number of policies, primarily due to the limited capacity in TCAM, which further hinders the development of new network services and applications. The scalable forwarding table structures for enterprise networks have therefore attracted numerous attentions from both academia and industry. To tackle this challenge, in this paper we present the design and implementation of a new forwarding table structure. It separates the functions of TCAM and SRAM, and maximally utilizes the large and flexible SRAM. A set of schemes are progressively designed, to compress storage of forwarding rules, and maintain correctness and achieve line-card speeds of packet forwarding. We further design an incremental update algorithm that allows less access to memory. The proposed scheme is validated and evaluated through a realistic implementation on a commercial router using real datasets. Our proposal can be easily implemented in the existing devices. The evaluation results show that the performance of forwarding tables under the proposed scheme is promising.National Key R&D Program of ChinaNational Natural Science Foundation of China (NSFC)Scientific Research Foundation for Young Teachers of Shenzhen Universit

    Models, Algorithms, and Architectures for Scalable Packet Classification

    Get PDF
    The growth and diversification of the Internet imposes increasing demands on the performance and functionality of network infrastructure. Routers, the devices responsible for the switch-ing and directing of traffic in the Internet, are being called upon to not only handle increased volumes of traffic at higher speeds, but also impose tighter security policies and provide support for a richer set of network services. This dissertation addresses the searching tasks performed by Internet routers in order to forward packets and apply network services to packets belonging to defined traffic flows. As these searching tasks must be performed for each packet traversing the router, the speed and scalability of the solutions to the route lookup and packet classification problems largely determine the realizable performance of the router, and hence the Internet as a whole. Despite the energetic attention of the academic and corporate research communities, there remains a need for search engines that scale to support faster communication links, larger route tables and filter sets and increasingly complex filters. The major contributions of this work include the design and analysis of a scalable hardware implementation of a Longest Prefix Matching (LPM) search engine for route lookup, a survey and taxonomy of packet classification techniques, a thorough analysis of packet classification filter sets, the design and analysis of a suite of performance evaluation tools for packet classification algorithms and devices, and a new packet classification algorithm that scales to support high-speed links and large filter sets classifying on additional packet fields

    Towards Terabit Carrier Ethernet and Energy Efficient Optical Transport Networks

    Get PDF
    corecore