719 research outputs found

    Building Internet caching systems for streaming media delivery

    Get PDF
    The proxy has been widely and successfully used to cache the static Web objects fetched by a client so that the subsequent clients requesting the same Web objects can be served directly from the proxy instead of other sources faraway, thus reducing the server\u27s load, the network traffic and the client response time. However, with the dramatic increase of streaming media objects emerging on the Internet, the existing proxy cannot efficiently deliver them due to their large sizes and client real time requirements.;In this dissertation, we design, implement, and evaluate cost-effective and high performance proxy-based Internet caching systems for streaming media delivery. Addressing the conflicting performance objectives for streaming media delivery, we first propose an efficient segment-based streaming media proxy system model. This model has guided us to design a practical streaming proxy, called Hyper-Proxy, aiming at delivering the streaming media data to clients with minimum playback jitter and a small startup latency, while achieving high caching performance. Second, we have implemented Hyper-Proxy by leveraging the existing Internet infrastructure. Hyper-Proxy enables the streaming service on the common Web servers. The evaluation of Hyper-Proxy on the global Internet environment and the local network environment shows it can provide satisfying streaming performance to clients while maintaining a good cache performance. Finally, to further improve the streaming delivery efficiency, we propose a group of the Shared Running Buffers (SRB) based proxy caching techniques to effectively utilize proxy\u27s memory. SRB algorithms can significantly reduce the media server/proxy\u27s load and network traffic and relieve the bottlenecks of the disk bandwidth and the network bandwidth.;The contributions of this dissertation are threefold: (1) we have studied several critical performance trade-offs and provided insights into Internet media content caching and delivery. Our understanding further leads us to establish an effective streaming system optimization model; (2) we have designed and evaluated several efficient algorithms to support Internet streaming content delivery, including segment caching, segment prefetching, and memory locality exploitation for streaming; (3) having addressed several system challenges, we have successfully implemented a real streaming proxy system and deployed it in a large industrial enterprise

    Smart PIN: performance and cost-oriented context-aware personal information network

    Get PDF
    The next generation of networks will involve interconnection of heterogeneous individual networks such as WPAN, WLAN, WMAN and Cellular network, adopting the IP as common infrastructural protocol and providing virtually always-connected network. Furthermore, there are many devices which enable easy acquisition and storage of information as pictures, movies, emails, etc. Therefore, the information overload and divergent content’s characteristics make it difficult for users to handle their data in manual way. Consequently, there is a need for personalised automatic services which would enable data exchange across heterogeneous network and devices. To support these personalised services, user centric approaches for data delivery across the heterogeneous network are also required. In this context, this thesis proposes Smart PIN - a novel performance and cost-oriented context-aware Personal Information Network. Smart PIN's architecture is detailed including its network, service and management components. Within the service component, two novel schemes for efficient delivery of context and content data are proposed: Multimedia Data Replication Scheme (MDRS) and Quality-oriented Algorithm for Multiple-source Multimedia Delivery (QAMMD). MDRS supports efficient data accessibility among distributed devices using data replication which is based on a utility function and a minimum data set. QAMMD employs a buffer underflow avoidance scheme for streaming, which achieves high multimedia quality without content adaptation to network conditions. Simulation models for MDRS and QAMMD were built which are based on various heterogeneous network scenarios. Additionally a multiple-source streaming based on QAMMS was implemented as a prototype and tested in an emulated network environment. Comparative tests show that MDRS and QAMMD perform significantly better than other approaches

    Enhancing Mobile Capacity through Generic and Efficient Resource Sharing

    Get PDF
    Mobile computing devices are becoming indispensable in every aspect of human life, but diverse hardware limits make current mobile devices far from ideal for satisfying the performance requirements of modern mobile applications and being used anytime, anywhere. Mobile Cloud Computing (MCC) could be a viable solution to bypass these limits which enhances the mobile capacity through cooperative resource sharing, but is challenging due to the heterogeneity of mobile devices in both hardware and software aspects. Traditional schemes either restrict to share a specific type of hardware resource within individual applications, which requires tremendous reprogramming efforts; or disregard the runtime execution pattern and transmit too much unnecessary data, resulting in bandwidth and energy waste.To address the aforementioned challenges, we present three novel designs of resource sharing frameworks which utilize the various system resources from a remote or personal cloud to enhance the mobile capacity in a generic and efficient manner. First, we propose a novel method-level offloading methodology to run the mobile computational workload on the remote cloud CPU. Minimized data transmission is achieved during such offloading by identifying and selectively migrating the memory contexts which are necessary to the method execution. Second, we present a systematic framework to maximize the mobile performance of graphics rendering with the remote cloud GPU, during which the redundant pixels across consecutive frames are reused to reduce the transmitted frame data. Last, we propose to exploit the unified mobile OS services and generically interconnect heterogeneous mobile devices towards a personal mobile cloud, which complement and flexibly share mobile peripherals (e.g., sensors, camera) with each other

    Design of Techniques to Enhance the Services for Mobile Video-on-Demand Applications

    Get PDF
    The current generation of mobile clients have incessant demand for services. Providing Video-on-Demand (VoD) services to these clients require a new paradigm. This paper presents an architecture for Mobile Video-on-Demand. Several schemes that reduces the load on the video server, thereby increasing the number of requests that need to be served is proposed. The Distributed Indexing reduces the storage load on the server and reduces the time to search for a video. The Chaining Technique increases the acceptance of requests and thereby reduces the rejection rate. Two types of hand-offs are defined :Video Server Hand-off and a Client Hand-off. These provide the continuity of services to the mobile clients. The Windowing Scheme which includes Session Management is proposed. This scheme control the flow of segments. All these schemes have been simulated and the results are presente
    corecore