38 research outputs found

    State of the art baseband DSP platforms for Software Defined Radio: A survey

    Get PDF
    Software Defined Radio (SDR) is an innovative approach which is becoming a more and more promising technology for future mobile handsets. Several proposals in the field of embedded systems have been introduced by different universities and industries to support SDR applications. This article presents an overview of current platforms and analyzes the related architectural choices, the current issues in SDR, as well as potential future trends.Peer reviewe

    Three-dimensional media for mobile devices

    Get PDF
    Cataloged from PDF version of article.This paper aims at providing an overview of the core technologies enabling the delivery of 3-D Media to next-generation mobile devices. To succeed in the design of the corresponding system, a profound knowledge about the human visual system and the visual cues that form the perception of depth, combined with understanding of the user requirements for designing user experience for mobile 3-D media, are required. These aspects are addressed first and related with the critical parts of the generic system within a novel user-centered research framework. Next-generation mobile devices are characterized through their portable 3-D displays, as those are considered critical for enabling a genuine 3-D experience on mobiles. Quality of 3-D content is emphasized as the most important factor for the adoption of the new technology. Quality is characterized through the most typical, 3-D-specific visual artifacts on portable 3-D displays and through subjective tests addressing the acceptance and satisfaction of different 3-D video representation, coding, and transmission methods. An emphasis is put on 3-D video broadcast over digital video broadcasting-handheld (DVB-H) in order to illustrate the importance of the joint source-channel optimization of 3-D video for its efficient compression and robust transmission over error-prone channels. The comparative results obtained identify the best coding and transmission approaches and enlighten the interaction between video quality and depth perception along with the influence of the context of media use. Finally, the paper speculates on the role and place of 3-D multimedia mobile devices in the future internet continuum involving the users in cocreation and refining of rich 3-D media content

    Hardware/Software Co-design for Multicore Architectures

    Get PDF
    Siirretty Doriast

    Programming techniques for efficient and interoperable software defined radios

    Get PDF
    Recently, Software-Dened Radios (SDRs) has became a hot research topic in wireless communications eld. This is jointly due to the increasing request of reconfigurable and interoperable multi-standard radio systems able to learn from their surrounding environment and efficiently exploit the available frequency spectrum resources, so realizing the cognitive radio paradigm, and to the availability of reprogrammable hardware architectures providing the computing power necessary to meet the tight real-time constraints typical of the state-of-art wideband communications standards. Most SDR implementations are based on mixed architectures in which Field Programmable Gate Arrays (FPGA), Digital Signal Processors (DSP) and General Purpose Processors (GPP) coexist. GPP-based solutions, even if providing the highest level of flexibility, are typically avoided because of their computational inefficiency and power consumption. Starting from these assumptions, this thesis tries to jointly face two of the main important issues in GPP-based SDR systems: the computational efficiency and the interoperability capacity. In the first part, this thesis presents the potential of a novel programming technique, named Memory Acceleration (MA), in which the memory resources typical of GPP-based systems are used to assist central processor in executing real-time signal processing operations. This technique, belonging to the classical computer-science optimization techniques known as Space-Time trade-offs, defines novel algorithmic methods to assist developers in designing their software-defined signal processing algorithms. In order to show its applicability some "real-world" case studies are presented together with the acceleration factor obtained. In the second part of the thesis, the interoperability issue in SDR systems is also considered. Existing software architectures, like the Software Communications Architecture (SCA), abstract the hardware/software components of a radio communications chain using a middleware like CORBA for providing full portability and interoperability to the implemented chain, called waveform in the SCA parlance. This feature is paid in terms of computational overhead introduced by the software communications middleware and this is one of the reasons why GPP-based architecture are generally discarded also for the implementation of narrow-band SCA-compliant communications standards. In this thesis we briefly analyse SCA architecture and an open-source SCA-compliant framework, ie. OSSIE, and provide guidelines to enable component-based multithreading programming and CPU affinity in that framework. We also detail the implementation of a real-time SCA-compliant waveform developed inside this modified framework, i.e. the VHF analogue aeronautical communications transceiver. Finally, we provide the proof of how it is possible to implement an efficient and interoperable real-time wideband SCA-compliant waveform, i.e. the AeroMACS waveform, on a GPP-based architecture by merging the acceleration factor provided by MA technique and the interoperability feature ensured by SCA architecture

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Turku Centre for Computer Science – Annual Report 2013

    Get PDF
    Due to a major reform of organization and responsibilities of TUCS, its role, activities, and even structures have been under reconsideration in 2013. The traditional pillar of collaboration at TUCS, doctoral training, was reorganized due to changes at both universities according to the renewed national system for doctoral education. Computer Science and Engineering and Information Systems Science are now accompanied by Mathematics and Statistics in newly established doctoral programs at both University of Turku and &Aring;bo Akademi University. Moreover, both universities granted sufficient resources to their respective programmes for doctoral training in these fields, so that joint activities at TUCS can continue. The outcome of this reorganization has the potential of proving out to be a success in terms of scientific profile as well as the quality and quantity of scientific and educational results.&nbsp; International activities that have been characteristic to TUCS since its inception continue strong. TUCS&rsquo; participation in European collaboration through EIT ICT Labs Master&rsquo;s and Doctoral School is now more active than ever. The new double degree programs at MSc and PhD level between University of Turku and Fudan University in Shaghai, P.R.China were succesfully set up and are&nbsp; now running for their first year. The joint students will add to the already international athmosphere of the ICT House.&nbsp; The four new thematic reseach programmes set up acccording to the decision by the TUCS Board have now established themselves, and a number of events and other activities saw the light in 2013. The TUCS Distinguished Lecture Series managed to gather a large audience with its several prominent speakers. The development of these and other research centre activities continue, and&nbsp; new practices and structures will be initiated to support the tradition of close academic collaboration.&nbsp; The TUCS&rsquo; slogan Where Academic Tradition Meets the Exciting Future has proven true throughout these changes. Despite of the dark clouds on the national and European economic sky, science and higher education in the field have managed to retain all the key ingredients for success. Indeed, the future of ICT and Mathematics in Turku seems exciting.</p

    Practical Real-Time with Look-Ahead Scheduling

    Get PDF
    In my dissertation, I present ATLAS — the Auto-Training Look-Ahead Scheduler. ATLAS improves service to applications with regard to two non-functional properties: timeliness and overload detection. Timeliness is an important requirement to ensure user interface responsiveness and the smoothness of multimedia operations. Overload can occur when applications ask for more computation time than the machine can offer. Interactive systems have to handle overload situations dynamically at runtime. ATLAS provides timely service to applications, accessible through an easy-to-use interface. Deadlines specify timing requirements, workload metrics describe jobs. ATLAS employs machine learning to predict job execution times. Deadline misses are detected before they occur, so applications can react early.:1 Introduction 2 Anatomy of a Desktop Application 3 Real Simple Real-Time 4 Execution Time Prediction 5 System Scheduler 6 Timely Service 7 The Road Ahead Bibliography Inde
    corecore