9,013 research outputs found

    Teaching control with Basic Maths: Introduction to Process Control course as a novel educational approach for undergraduate engineering programs

    Full text link
    In this article, we discuss a novel education approach to control theory in undergraduate engineering programs. In particular, we elaborate on the inclusion of an introductory course on process control during the first years of the program, to appear right after the students undergo basic calculus and physics courses. Our novel teaching proposal comprises debating the basic elements of control theory without requiring any background on advanced mathematical frameworks from the part of the students. The methodology addresses, conceptually, the majority of the steps required for the analysis and design of simple control systems. Herein, we thoroughly detail this educational guideline, as well as tools that can be used in the classroom. Furthermore, we propose a cheap test-bench kit and an open-source numerical simulator that can be used to carry out experiments during the proposed course. Most importantly, we also assess on how the Introduction to process control course has affected the undergraduate program on Control and Automation Engineering at Universidade Federal de Santa Catarina (UFSC, Brazil). Specifically, we debate the outcomes of implementing our education approach at UFSC from 2016 to 2023, considering students' rates of success in other control courses and perspectives on how the chair helped them throughout the course of their program. Based on randomised interviews, we indicate that our educational approach has had good teaching-learning results: students tend to be more motivated for other control-related subjects, while exhibiting higher rates of success.Comment: 55 pages, 13 figures, Screening at the Journal of Control, Automation and Electrical System

    A software tool for learning the dynamic behavior of power electronics circuits

    Get PDF
    A new software tool for learning the dynamic behavior of power electronics circuits is developed for undergraduate students. This tool incorporates the merits of two well-known software packages, namely, the realistic time-domain simulation of PSpice and the parametric identification process of MatLab. Hence, without going through complicated mathematics, the students can easily obtain the transient response, transfer function, and frequency response of power electronics circuits. The software tool is exemplified using a buck dc-dc converter. Its accuracy is verified by comparing the simulation result with those obtained by the state-space averaging technique and the experimental measurement. © 1996 IEEE.published_or_final_versio

    Role of Laboratory Education in Power Engineering: Is the Virtual Laboratory Feasible? Part I

    Get PDF
    IEEE PES sponsors a panel session in the summer power meeting in Seattle on laboratory education in power engineering. Six short papers and one full paper summarize the opinions of the panelist. This paper contains the summary of four of the presentations. The objective of the panel is to discuss the role of laboratory education in power engineering at both the graduate and undergraduate level. The question is what type of laboratory course is needed? Power electronics, electric machines, system simulation, etc? the second objective is to assess the status and value of computer based virtual laboratories. This includes the presentation of experience with virtual laboratories and a list of available tools. The teaching of power system operation can be improved using a simulation laboratory. The available simulation tools and the assessment of their values will be an important topic of the panel. The last presentation gives opposing views, arguing for the traditional laboratory us

    Integrating Research Results into a Power Engineering Curriculum

    Get PDF
    This paper presents summaries of the activities of six research active power engineering educators which were presented in a panel session of the same name at the IEEE Power Engineering Society Winter Meeting on February 3, 1997 in New York City, USA. Each of the panelists discusses how research results are incorporated into courses and how students benefit from this approach

    Curricular Optimization: Solving for the Optimal Student Success Pathway

    Get PDF
    Considering the significant investment of higher education made by students and their families, graduating in a timely manner is of the utmost importance. Delay attributed to drop out or the retaking of a course adds cost and negatively affects a student’s academic progression. Considering this, it becomes paramount for institutions to focus on student success in relation to term scheduling. Often overlooked, complexity of a course schedule may be one of the most important factors in whether or not a student successfully completes his or her degree. More often than not students entering an institution as a first time full time (FSFT) freshman follow the advised and published schedule given by administrators. Providing the optimal schedule that gives the student the highest probability of success is critical. In efforts to create this optimal schedule, this thesis introduces a novel optimization algorithm with the objective to separate courses which when taken together hurt students’ pass rates. Inversely, we combine synergistic relationships that improve a students probability for success when the courses are taken in the same semester. Using actual student data at the University of Kentucky, we categorically find these positive and negative combinations by analyzing recorded pass rates. Using Julia language on top of the Gurobi solver, we solve for the optimal degree plan of a student in the electrical engineering program using a linear and non-linear multi-objective optimization. A user interface is created for administrators to optimize their curricula at main.optimizeplans.com

    Faculty Senate Monthly Packet January 2013

    Get PDF
    The January 2013 Monthly packet includes the January agenda and appendices and the Faculty Senate minutes and attachments from the meeting held December 201

    Robotic telescopes in education

    Get PDF
    The power of robotic telescopes to transform science education has been voiced by multiple sources, since the 1980s. Since then, much technical progress has been made in robotic telescope provision to end users via a variety of different approaches. The educational transformation hoped for by the provision of this technology has, so far, yet to be achieved on a scale matching the technical advancements. In this paper, the history, definition, role and rationale of optical robotic telescopes with a focus on their use in education is provided. The current telescope access providers and educational projects and their broad uses in traditional schooling, undergraduate and outreach are then outlined. From this background, the current challenges to the field, which are numerous, are then presented. This review is concluded with a series of recommendations for current and future projects that are apparent and have emerged from the literature
    • …
    corecore